Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A microfluidics-based method for measuring neuronal activity in Drosophila chemosensory neurons


Monitoring neuronal responses to defined sensory stimuli is a powerful and widely used approach for understanding sensory coding in the nervous system. However, providing precise, stereotypic and reproducible cues while concomitantly recording neuronal activity remains technically challenging. Here we describe the fabrication and use of a microfluidics system that allows precise temporally restricted stimulation of Drosophila chemosensory neurons with an array of different chemical cues. The system can easily be combined with genetically encoded calcium sensors, and it can measure neuronal activity at single-cell resolution in larval sense organs and in the proboscis or leg of the adult fly. We describe the design of the master mold, the production of the microfluidic chip and live imaging using the calcium sensor GCaMP, expressed in distinct types of Drosophila chemosensory neurons. Fabrication of the master mold and microfluidic chips requires basic skills in photolithography and takes 2 weeks; the same devices can be used repeatedly over several months. Flies can be prepared for measurements in minutes and imaged for up to 1 h.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Overview of workflow, the design of the microfluidic chip and the installation of the pumps and chip on the microscope.
Figure 2: Measurements with larval preparations.
Figure 3: Measurements using adult preparations.


  1. 1

    de Bruyne, M., Foster, K. & Carlson, J.R. Odor coding in the Drosophila antenna. Neuron 30, 537–552 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Benton, R., Sachse, S., Michnick, S.W. & Vosshall, L.B. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 4, e20 (2006).

    Article  Google Scholar 

  3. 3

    Lee, Y., Moon, S.J. & Montell, C. Multiple gustatory receptors required for the caffeine response in Drosophila. Proc. Natl. Acad. Sci. USA 106, 4495–4500 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Weiss, L.A., Dahanukar, A., Kwon, J.Y., Banerjee, D. & Carlson, J.R. The molecular and cellular basis of bitter taste in Drosophila. Neuron 69, 258–272 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Root, C.M., Ko, K.I., Jafari, A. & Wang, J.W. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145, 133–144 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Mishra, D. et al. The molecular basis of sugar sensing in Drosophila larvae. Curr. Biol. 23, 1466–1471 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Zhang, Y.V., Ni, J. & Montell, C. The molecular basis for attractive salt-taste coding in Drosophila. Science 340, 1334–1338 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Clyne, P., Grant, A., O'Connell, R. & Carlson, J.R. Odorant response of individual sensilla on the Drosophila antenna. Inver. Neurosci. 3, 127–135 (1997).

    CAS  Article  Google Scholar 

  9. 9

    Hiroi, M., Marion-Poll, F. & Tanimura, T. Differentiated response to sugars among labellar chemosensilla in Drosophila. Zoolog. Sci. 19, 1009–1018 (2002).

    Article  Google Scholar 

  10. 10

    Hallem, E.A., Ho, M.G. & Carlson, J.R. The molecular basis of odor coding in the Drosophila antenna. Cell 117, 965–979 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Hallem, E.A. & Carlson, J.R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Dahanukar, A., Lei, Y.T., Kwon, J.Y. & Carlson, J.R. Two Gr genes underlie sugar reception in Drosophila. Neuron 56, 503–516 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Cameron, P., Hiroi, M., Ngai, J. & Scott, K. The molecular basis for water taste in Drosophila. Nature 465, 91–95 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Vosshall, L.B. & Stocker, R.F. Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci. 30, 505–533 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Oppliger, F.Y., Guerin, P.M. & Vlimant, M. Neurophysiological and behavioural evidence for an olfactory function for the dorsal organ and a gustatory one for the terminal organ in Drosophila melanogaster larvae. J. Insect Physiol. 46, 135–144 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Chalasani, S.H. et al. Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 450, 63–70 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Chronis, N., Zimmer, M. & Bargmann, C.I. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat. Methods 4, 727–731 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Ghannad-Rezaie, M., Wang, X., Mishra, B., Collins, C. & Chronis, N. Microfluidic chips for in vivo imaging of cellular responses to neural injury in Drosophila larvae. PloS One 7, e29869 (2012).

    CAS  Article  Google Scholar 

  19. 19

    van Giesen, L. et al. Multimodal stimulus coding by a gustatory sensory neuron in Drosophila larvae. Nat. Commun. 7, 10687 (2016).

    CAS  Article  Google Scholar 

  20. 20

    Liman, E.R., Zhang, Y.V. & Montell, C. Peripheral coding of taste. Neuron 81, 984–1000 (2014).

    CAS  Article  Google Scholar 

  21. 21

    Choi, J. et al. A pair of pharyngeal gustatory receptor neurons regulates caffeine-dependent ingestion in Drosophila larvae. Front. Cell. Neurosci. 10, 181 (2016).

    Article  Google Scholar 

  22. 22

    Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  Google Scholar 

  23. 23

    Chen, T.W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Reiff, D.F. et al. In vivo performance of genetically encoded indicators of neural activity in flies. J. Neurosci. 25, 4766–4778 (2005).

    CAS  Article  Google Scholar 

  25. 25

    Jayaraman, V. & Laurent, G. Evaluating a genetically encoded optical sensor of neural activity using electrophysiology in intact adult fruit flies. Front. Neural Circuits 1, 3 (2007).

    Article  Google Scholar 

  26. 26

    Cao, G. et al. Genetically targeted optical electrophysiology in intact neural circuits. Cell 154, 904–913 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Gong, Y. et al. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 350, 1361–1366 (2015).

    CAS  Article  Google Scholar 

  28. 28

    Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Fiala, A. et al. Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons. Curr. Biol. 12, 1877–1884 (2002).

    CAS  Article  Google Scholar 

  30. 30

    Seelig, J.D. et al. Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior. Nat. Methods 7, 535–540 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Asahina, K., Louis, M., Piccinotti, S. & Vosshall, L.B. A circuit supporting concentration-invariant odor perception in Drosophila. J. Biol. 8, 9 (2009).

    Article  Google Scholar 

  32. 32

    Klein, M. et al. Sensory determinants of behavioral dynamics in Drosophila thermotaxis. Proc. Natl. Acad. Sci. USA 112, E220–E229 (2015).

    CAS  Article  Google Scholar 

  33. 33

    Ni, L. et al. The ionotropic receptors IR21a and IR25a mediate cool sensing in Drosophila. eLife 5, e13254 (2016).

    Article  Google Scholar 

  34. 34

    Miyamoto, T., Chen, Y., Slone, J. & Amrein, H. Identification of a Drosophila glucose receptor using Ca2+ imaging of single chemosensory neurons. PloS One 8, e56304 (2013).

    CAS  Article  Google Scholar 

  35. 35

    Lin, Q. in Physical Properties of Polymers Handbook (ed. J.E. Mark) (2006).

  36. 36

    Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819–13840 (2012).

    CAS  Article  Google Scholar 

  37. 37

    Fishilevich, E. et al. Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr. Biol. 15, 2086–2096 (2005).

    CAS  Article  Google Scholar 

  38. 38

    Pfeiffer, B.D. et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl. Acad. Sci. USA 105, 9715–9720 (2008).

    CAS  Article  Google Scholar 

Download references


We thank the Bloomington Drosophila Stock Center for reagents. We thank R. Benton, P. Renaud, L. Pethö, K. Suter and J. Dorsaz for help with the experiments, and T. Graham and B. Egger for helpful discussion of the manuscript. This work was supported by grants from the Swiss National Science Foundation (CRSII3_136307 and 31003A_149499) and the European Research Council (ERC-2012-StG 309832-PhotoNaviNet) to S.G.S. We further thank our colleagues in the Sprecher laboratory for fruitful discussions of the manuscript.

Author information




L.v.G. and G.L.N.-M. performed the experiments. L.v.G. and S.G.S. developed the protocol. L.v.G., G.L.N.-M., J.Y.K. and S.G.S. wrote the paper.

Corresponding authors

Correspondence to Jae Young Kwon or Simon G Sprecher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Correction of artifacts in the graph.

(a) Representative fluorescent trace before and after movement artifact correction. The fluorescence intensity value before the moving frame was duplicated to mask the artifact. (b) In case of excessive movement the same procedure cannot be applied, and it is recommended to discard the recording.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 Correction of artifacts in the graph. (a,b) Representative fluorescence trace before and after movement artifact correction. (a) The fluorescence intensity value before the moving frame was duplicated to mask the artifact. (b) In case of excessive movement, the same procedure cannot be applied, and it is recommended that the recording be discarded. (PDF 290 kb)

Demonstration of larval dissection and installation in the microfluidic chip. (MOV 28062 kb)

Correction of movement artifacts. (MOV 945 kb)

Supplementary Data

Design of the photomask used for the microfluidic chip fabrication (.cif file). (ZIP 1032 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Giesen, L., Neagu-Maier, G., Kwon, J. et al. A microfluidics-based method for measuring neuronal activity in Drosophila chemosensory neurons. Nat Protoc 11, 2389–2400 (2016).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing