Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Assembly of multienzyme complexes on DNA nanostructures

Abstract

In nature, the catalytic efficiency of multienzyme complexes highly depends on their spatial organization. The positions and orientations of the composite enzymes are often precisely controlled to facilitate substrate transport between them. Self-assembled DNA nanostructures hold great promise for organizing biomolecules at the nanoscale. Here, we present detailed protocols for exploiting DNA nanostructures as assembly scaffolds that organize the spatial arrangements of multienzyme cascades with control over their relative distance, compartmentalization and substrate diffusion paths. The protocol describes the preparation and purification of DNA-conjugated enzymes and cofactors, along with the assembly of these prepared complexes on DNA nanostructures. The architecture of assembled enzyme complexes is then readily characterized using a broad selection of techniques from routine gel electrophoresis to advanced single-molecule imaging. We also describe methods of purifying these nano-assemblies and testing them with functional assays based on either bulk or single-molecule fluorescence measurements. The entire assembly and characterization of a multienzyme complex can be completed within 1–2 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The assembly of enzymes on spatially addressable DNA scaffolds.
Figure 2: Overview of DNA nanostructure-scaffolded assembly of multienzyme complexes.
Figure 3: Chemical conjugation of oligonucleotides with enzymes.
Figure 4: Chemical conjugation of oligonucleotides with cofactors.
Figure 5: Characterization of enzyme-assembled DNA nanostructures.
Figure 6: Purification and structural characterization of enzyme-assembled DNA nanostructures.
Figure 7: Activity characterization of the enzyme-assembled DNA nanostructures.
Figure 8: Enzyme activities vs labeled number of SPDP molecules.
Figure 9: Single-enzyme activity data collection and analysis.
Figure 10: Schematic of prism-based TIRF setup.
Figure 11: The assembly of multienzyme complexes on DNA nanostructures.

Similar content being viewed by others

References

  1. Savage, D.F., Afonso, B., Chen, A.H. & Silver, P.A. Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 327, 1258–1261 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Srere, P.A. & Mosbach, K. Metabolic compartmentation: symbiotic, organellar, multienzymic, and microenvironmental. Annu. Rev. Microbiol. 28, 61–84 (1974).

    Article  CAS  PubMed  Google Scholar 

  3. Seeman, N.C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    Article  CAS  PubMed  Google Scholar 

  4. Fu, T.J. & Seeman, N.C. DNA double-crossover molecules. Biochemistry 32, 3211–3220 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Seeman, N.C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Ke, Y., Ong, L.L., Shih, W.M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Wei, B., Dai, M. & Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 485, 623–626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, F., Nangreave, J., Liu, Y. & Yan, H. Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc. 136, 11198–11211 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Douglas, S.M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dietz, H., Douglas, S.M. & Shih, W.M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Han, D. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Benson, E. et al. DNA rendering of polyhedral meshes at the nanoscale. Nature 523, 441–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, F. et al. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat. Nanotechnol. 10, 779–784 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Ke, Y. et al. DNA brick crystals with prescribed depths. Nat. Chem. 6, 994–1002 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zheng, J. et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Douglas, S.M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Castro, C.E. et al. A primer to scaffolded DNA origami. Nat. Methods 8, 221–229 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Williams, S. et al. Tiamat: a three-dimensional editing tool for complex DNA structures. in DNA Computing (eds. Goel, A., Simmel, F.C. & Sosík, P.) 90–101 (Springer-Verlag Berlin Heidelberg, Germany, 2009).

  20. Fu, J., Liu, M., Liu, Y. & Yan, H. Spatially-interactive biomolecular networks organized by nucleic acid nanostructures. Acc. Chem. Res. 45, 1215–1226 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pinheiro, A.V., Han, D., Shih, W.M. & Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6, 763–772 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, T., Collins, J., Arbuckle-Keil, G.A. & Fu, J. DNA-directed assembly of conductive nanomaterials. Adv. Sci. Eng. Med. 7, 1019–1032 (2015).

    Article  CAS  Google Scholar 

  23. Zhang, T., Collins, J. & Fu, J. Single-molecule sensing of biomolecular interactions on DNA nanostructures. Curr. Nanosci. 11, 722–735 (2015).

    Article  CAS  Google Scholar 

  24. Yang, Y.R., Liu, Y. & Yan, H. DNA nanostructures as programmable biomolecular scaffolds. Bioconjug. Chem. 26, 1381–1395 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Fu, J., Liu, M., Liu, Y., Woodbury, N.W. & Yan, H. Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J. Am. Chem. Soc. 134, 5516–5519 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilner, O.I. et al. Enzyme cascades activated on topologically programmed DNA scaffolds. Nat. Nanotechnol. 4, 249–254 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Erkelenz, M., Kuo, C.H. & Niemeyer, C.M. DNA-mediated assembly of cytochrome P450 BM3 subdomains. J. Am. Chem. Soc. 133, 16111–16118 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Fu, J. et al. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat. Nanotechnol. 9, 531–536 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, M. et al. A DNA tweezer-actuated enzyme nanoreactor. Nat. Commun. 4, 2127 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Xin, L., Zhou, C., Yang, Z. & Liu, D. Regulation of an enzyme cascade reaction by a DNA machine. Small 9, 3088–3091 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Andersen, E.S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Douglas, S.M., Bachelet, I. & Church, G.M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Zhao, Z. et al. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion. Nat. Commun. 7, 10619 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Juul, S. et al. Temperature-controlled encapsulation and release of an active enzyme in the cavity of a self-assembled DNA nanocage. ACS Nano 7, 9724–9734 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Linko, V., Eerikäinen, M. & Kostiainen, M.A. A modular DNA origami-based enzyme cascade nanoreactor. Chem. Commun. 51, 5351–5354 (2015).

    Article  CAS  Google Scholar 

  36. Fu, Y. et al. Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors. J. Am. Chem. Soc. 135, 696–702 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Niemeyer, C.M. Semisynthetic DNA–protein conjugates for biosensing and nanofabrication. Angew. Chem. Int. Ed. Engl. 49, 1200–1216 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Chhabra, R. et al. Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. J. Am. Chem. Soc. 129, 10304–10305 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Witus, L.S. & Francis, M. Site-specific protein bioconjugation via a pyridoxal 5′-phosphate-mediated N-terminal transamination reaction. Curr. Protoc. Chem. Biol. 2, 125–134 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shen, W., Zhong, H., Neff, D. & Norton, M.L. NTA directed protein nanopatterning on DNA origami nanoconstructs. J. Am. Chem. Soc. 131, 6660–6661 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Duckworth, B.P. et al. A universal method for the preparation of covalent protein–DNA conjugates for use in creating protein nanostructures. Angew. Chem. Weinheim. Bergstr. Ger. 119, 8819–8822 (2007).

    Google Scholar 

  42. Fang, X., Li, J.J. & Tan, W. Using molecular beacons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA. Anal. Chem. 72, 3280–3285 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Cattaneo, A., Biocca, S., Corvaja, N. & Calissano, P. Nuclear localization of a lactic dehydrogenase with single-stranded DNA-binding properties. Exp. Cell Res. 161, 130–140 (1985).

    Article  CAS  PubMed  Google Scholar 

  44. Kaiserman, H.B., Odenwald, W.F., Stowers, D.J., Poll, E.H. & Benbow, R.M. A major single-stranded DNA binding protein from ovaries of the frog, Xenopus laevis, is lactate dehydrogenase. Biochim Biophys Acta 1008, 23–30 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Fiume, L. et al. Galloflavin prevents the binding of lactate dehydrogenase A to single stranded DNA and inhibits RNA synthesis in cultured cells. Biochem. Biophys. Res. Commun. 430, 466–469 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Schmied, J.J. et al. DNA origami–based standards for quantitative fluorescence microscopy. Nat. Protoc. 9, 1367–1391 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Widom, J.R., Dhakal, S., Heinicke, L.A. & Walter, N.G. Single molecule tools for enzymology, structural biology, systems biology and nanotechnology: an update. Arch. Toxicol. 88, 1965–1985 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bellot, G., McClintock, M.A., Lin, C. & Shih, W.M. Recovery of intact DNA nanostructures after agarose gel-based separation. Nat. Methods 8, 192–194 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Dhakal, S. et al. Rational design of DNA-actuated enzyme nanoreactors guided by single molecule analysis. Nanoscale 8, 3125–3137 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Liu, M. et al. A three-enzyme pathway with an optimised geometric arrangement to facilitate substrate transfer. ChemBioChem 17, 1097–1101 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, Z., Jacovetty, E.L., Liu, Y. & Yan, H. Encapsulation of gold nanoparticles in a DNA origami cage. Angew. Chem. Int. Ed. Engl. 50, 2041–2044 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goodman, R.P. et al. Reconfigurable, braced, three-dimensional DNA nanostructures. Nat. Nanotechnol. 3, 93–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Gao, Y. et al. Tuning enzyme kinetics through designed intermolecular interactions far from the active site. ACS Catal. 5, 2149–2153 (2015).

    Article  CAS  Google Scholar 

  54. Golub, E., Albada, H.B., Liao, W.-C., Biniuri, Y. & Willner, I. Nucleoapzymes: hemin/G-quadruplex DNAzyme–aptamer binding site conjugates with superior enzyme-like catalytic functions. J. Am. Chem. Soc. 138, 164–172 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Wheeldon, I. et al. Substrate channelling as an approach to cascade reactions. Nat. Chem. 8, 299–309 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Dueber, J.E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. You, C., Myung, S. & Zhang, Y.-H.P. Facilitated substrate channeling in a self-assembled trifunctional enzyme complex. Angew. Chem. Int. Ed. Engl. 51, 8787–8790 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Sheldon, R.A. Cross-linked enzyme aggregates (CLEAs): stable and recyclable biocatalysts. Biochem. Soc. Trans. 35, 1583–1587 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Sheldon, R.A. Enzyme immobilization: the quest for optimum performance. Adv. Synth. Catal. 349, 1289–1307 (2007).

    Article  CAS  Google Scholar 

  60. Cha, T., Guo, A. & Zhu, X.-Y. Enzymatic activity on a chip: the critical role of protein orientation. Proteomics 5, 416–419 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Clarizia, L.-J.A. et al. Antibody orientation enhanced by selective polymer–protein noncovalent interactions. Anal. Bioanal. Chem. 393, 1531–1538 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Kim, J., Jia, H. & Wang, P. Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol. Adv. 24, 296–308 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Comellas-Aragones, M. et al. A virus-based single-enzyme nanoreactor. Nat. Nanotechnol. 2, 635–639 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Fiedler, J.D., Brown, S.D., Lau, J.L. & Finn, M.G. RNA-directed packaging of enzymes within virus-like particles. Angew. Chem. Int. Ed. Engl. 49, 9648–9651 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yoshimoto, M. Stabilization of enzymes through encapsulation in liposomes. in Enzyme Stabilization and Immobilization: Methods and Protocols (ed. Minteer, S.D.) 9–18 (Humana Press, New York, 2011).

  66. Gaitzsch, J., Huang, X. & Voit, B. Engineering functional polymer capsules toward smart nanoreactors. Chem. Rev. 116, 1053–1093 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Liu, Y. et al. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nat. Nanotechnol. 8, 187–192 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Betancor, L. & Luckarift, H.R. Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol. 26, 566–572 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Ding, Y., Chuan, Y.P., He, L. & Middelberg, A.P.J. Modeling the competition between aggregation and self-assembly during virus-like particle processing. Biotechnol. Bioeng. 107, 550–560 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Vriezema, D.M. et al. Self-assembled nanoreactors. Chem. Rev. 105, 1445–1490 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Guo, P. The emerging field of RNA nanotechnology. Nat. Nanotechnol. 5, 833–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Delebecque, C.J., Lindner, A.B., Silver, P.A. & Aldaye, F.A. Organization of intracellular reactions with rationally designed RNA assemblies. Science 333, 470–474 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. ElSohly, A.M. & Francis, M.B. Development of oxidative coupling strategies for site-selective protein modification. Acc. Chem. Res. 48, 1971–1978 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Rosen, C.B. et al. Template-directed covalent conjugation of DNA to native antibodies, transferrin and other metal-binding proteins. Nat. Chem. 6, 804–809 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Hahn, J., Wickham, S.F.J., Shih, W.M. & Perrault, S.D. Addressing the instability of DNA nanostructures in tissue culture. ACS Nano 8, 8765–8775 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Summers, F.A., Zhao, B., Ganini, D. & Mason, R.P. Photooxidation of amplex red to resorufin: implications of exposing the amplex red assay to light. Methods Enzymol. 526, 1–17 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Schmidt, T.L. et al. Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries. Nat. Commun. 6, 8634 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Lin, C., Xie, M., Chen, J.J.L., Liu, Y. & Yan, H. Rolling-circle amplification of a DNA nanojunction. Angew. Chem. Int. Ed. Engl. 45, 7537–7539 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Marchi, A.N., Saaem, I., Tian, J. & LaBean, T.H. One-pot assembly of a hetero-dimeric DNA origami from chip-derived staples and double-stranded scaffold. ACS Nano 7, 903–910 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Ducani, C., Kaul, C., Moche, M., Shih, W.M. & Högberg, B. Enzymatic production of ′monoclonal stoichiometric′ single-stranded DNA oligonucleotides. Nat. Methods 10, 647–652 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Blanco, M. & Walter, N.G. Analysis of complex single-molecule FRET time trajectories. Methods Enzymol. 472, 153–178 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gourévitch, B. & Eggermont, J.J. A nonparametric approach for detection of bursts in spike trains. J. Neurosci. Methods 160, 349–358 (2007).

    Article  PubMed  Google Scholar 

  83. Rinaldi, A.J., Lund, P.E., Blanco, M.R. & Walter, N.G. The Shine-Dalgarno sequence of riboswitch-regulated single mRNAs shows ligand-dependent accessibility bursts. Nat. Commun. 7, 8976 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Michelotti, N., de Silva, C., Johnson-Buck, A.E., Manzo, A.J. & Walter, N.G. A bird's eye view: tracking slow nanometer-scale movements of single molecular nano-assemblies. Methods Enzymol. 475, 121–148 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Johnson-Buck, A. & Walter, N.G. Discovering anomalous hybridization kinetics on DNA nanostructures using single-molecule fluorescence microscopy. Methods 67, 177–184 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Rowland, P., Basak, A.K., Gover, S., Levy, H.R. & Adams, M.J. The three–dimensional structure of glucose 6–phosphate dehydrogenase from Leuconostoc mesenteroides refined at 2.0 Å resolution. Structure 2, 1073–1087 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Chapman, A.D.M., Cortés, A., Dafforn, T.R., Clarke, A.R. & Brady, R.L. Structural basis of substrate specificity in malate dehydrogenases: crystal structure of a ternary complex of porcine cytoplasmic malate dehydrogenase, α-Ketomalonate and TetrahydoNAD. J. Mol. Biol. 285, 703–712 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by an Army Research Office YIP award (W911NF-14-1-0434) and the Cottrell College Science Award to J.F., and an Army Research Office MURI award (W911NF-12-1-0420) to H.Y. and N.G.W. J.F. is supported by startup funds from Rutgers University. H.Y. is also supported by the NIH Transformative award R01GM104960 and the Presidential Strategic Initiative Fund from Arizona State University. We thank K. Taylor for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.F., Y.R.Y., M.L. and T.Z. developed the DNA–enzyme conjugation and purification procedure; J.F., Y.R.Y. and M.L. developed the process for enzyme assembly on 2D DNA nanostructures, and characterized the activity; J.F. and Z.Z. designed DNA nanocages for enzyme encapsulation and performed activity assay in bulk solution; S.D. developed single-molecule fluorescence experiments and analyzed data; and J.F., N.G.W. and H.Y. conceived the concepts and supervised the projects. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Jinglin Fu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Assembly of a DNA origami tile.

A M13 mp 18 ssDNA scaffold is incubated with a set of hundreds of staples strands, which are thermally annealed for assembling DNA origami nanostructures.

Supplementary Figure 2 Designed DNA nanostructures for enzyme assembly.

(a) A DNA DX tile. (b) A four-way junction tile. (c) A rectangular DNA origami tile. (d) A 3D DNA nanocage based on honeycomb folding pattern.

Supplementary Figure 3 AFM quantification of the co-assembly of GOx and HRP on a rectangular DNA origami tile.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Methods (PDF 373 kb)

Supplementary Data

DNA structures. (ZIP 550 kb)

Supplementary Software

Custom-written IDL (Interactive Data Language) and MATLAB scripts. (ZIP 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Yang, Y., Dhakal, S. et al. Assembly of multienzyme complexes on DNA nanostructures. Nat Protoc 11, 2243–2273 (2016). https://doi.org/10.1038/nprot.2016.139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.139

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research