Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Synthesis, lipid membrane incorporation, and ion permeability testing of carbon nanotube porins

Abstract

Carbon nanotube porins (CNTPs) are 10- to 20-nm-long segments of lipid-stabilized single-walled carbon nanotubes (CNTs) that can be inserted into phospholipid membranes to form nanometer-scale-diameter pores that approximate the geometry and many key transport characteristics of biological membrane channels. We describe protocols for CNTP synthesis by ultrasound-assisted cutting of long CNTs in the presence of lipid amphiphiles, and for validation of CNTP incorporation into a lipid membrane using a proton permeability assay. In addition, we describe protocols for measuring conductance of individual CNTPs in planar lipid bilayers and plasma membranes of live cells. The protocol for the preparation and testing of the CNTPs in vesicle systems takes 3 d, and single CNTP conductance measurements take 2–5 h. The CNTPs produced by this cutting protocol remain stable and active for at least 10–12 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustrating the steps required for the CNTP synthesis and self-assembly into liposomes for ion transport studies.
Figure 2: Customized ultrasonicator setup for cutting carbon nanotubes (Steps 12–21).
Figure 3: TEM and cryo-TEM imaging of CNTPs.
Figure 4: Conductance measurements of CNTP incorporation into synthetic lipid membranes.
Figure 5: Conductance measurements of CNTP incorporation into plasma membranes of live cells.
Figure 6: Changes of membrane current and conductance produced by CNTP incorporation.

Similar content being viewed by others

References

  1. Noy, A. et al. Nanofluidics in carbon nanotubes. Nano Today 2, 22–29 (2007).

    Article  Google Scholar 

  2. Aidley, D.J. & Stanfield, P.R. Ion Channels: Molecules in Action (Cambridge University Press, 1996).

  3. Fyles, T. Synthetic ion channels in bilayer membranes. Chem. Soc. Rev. 36, 335–347 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Hummer, G., Rasaiah, J.C. & Noworyta, J.P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Daiguji, H., Yang, P. & Majumdar, A. Ion transport in nanofluidic channels. Nano Lett. 4, 137–142 (2004).

    Article  CAS  Google Scholar 

  6. Dellago, C., Naor, M.M. & Hummer, G. Proton transport through water-filled carbon nanotubes. Phys. Rev. Lett. 90, 105902 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. Holt, J.K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Dekker, C. Solid-state nanopores. Nat. Nanotechnol. 2, 209–215 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Shen, Y.-x., Saboe, P.O., Sines, I.T., Erbakan, M. & Kumar, M. Biomimetic membranes: a review. J. Membr. Sci. 454, 359–381 (2014).

    Article  CAS  Google Scholar 

  10. Agre, P., Bonhivers, M. & Borgnia, M.J. The aquaporins, blueprints for cellular plumbing systems. J. Biol. Chem. 273, 14659–14662 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Kozono, D., Yasui, M., King, L.S. & Agre, P. Aquaporin water channels: atomic structure molecular dynamics meet clinical medicine. J. Clin. Invest. 109, 1395–1399 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Savage, D.F., Egea, P.F., Robles-Colmenares, Y., O'Connell III, J.D. & Stroud, R.M. Architecture and selectivity in aquaporins: 2.5 Å X-ray structure of aquaporin Z. PLoS Biol. 1, e72 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gu, L.Q., Braha, O., Conlan, S., Cheley, S. & Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398, 686–690 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Sone, Y., Ekdunge, P. & Simonsson, D. Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method. J. Electrochem. Soc. 143, 1254–1259 (1996).

    Article  CAS  Google Scholar 

  16. Randa, H.S., Forrest, L.R., Voth, G.A. & Sansom, M.S. Molecular dynamics of synthetic leucine-serine ion channels in a phospholipid membrane. Biophys. J. 77, 2400–2410 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Le Duc, Y. et al. Imidazole-quartet water and proton dipolar channels. Angew. Chem. Int. Ed. 50, 11366–11372 (2011).

    Article  CAS  Google Scholar 

  18. Majumder, M., Chopra, N., Andrews, R. & Hinds, B.J. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438, 44–44 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Geng, J. et al. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature 514, 612–615 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Sun, L. & Crooks, R.M. Single carbon nanotube membranes: a well-defined model for studying mass transport through nanoporous materials. J. Am. Chem. Soc. 122, 12340–12345 (2000).

    Article  CAS  Google Scholar 

  21. Hinds, B.J. et al. Aligned multiwalled carbon nanotube membranes. Science 303, 62–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, C.Y., Choi, W., Han, J.-H. & Strano, M.S. Coherence resonance in a single-walled carbon nanotube ion channel. Science 329, 1320–1324 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, H. et al. Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327, 64–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, L., Yang, C., Zhao, K., Li, J. & Wu, H.-C. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor. Nat. Commun. 4, 2989 (2013).

    Article  PubMed  CAS  Google Scholar 

  25. Misra, N. et al. Bioelectronic silicon nanowire devices utilizing functional membrane proteins. Proc. Natl. Acad. Sci. USA 106, 13780–13784 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tunuguntla, R.H. et al. Bioelectronic light-gated transistors with biologically tunable performance. Adv. Mater. 27, 831–836 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Zhong, C. et al. A polysaccharide bioprotonic field-effect transistor. Nat. Commun. 2, 476 (2011).

    Article  PubMed  CAS  Google Scholar 

  28. Sun, X. et al. Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm. J. Am. Chem. Soc. 130, 6551–6555 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Hirano-Iwata, A., Ishinari, Y., Yamamoto, H. & Niwano, M. Micro-and nano-technologies for lipid bilayer-based ion-channel functional assays. Chem. Asian J. 10, 1266–1274 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Zagnoni, M. Miniaturised technologies for the development of artificial lipid bilayer systems. Lab Chip 12, 1026–1039 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Gutsmann, T., Heimburg, T., Keyser, U., Mahendran, K.R. & Winterhalter, M. Protein reconstitution into freestanding planar lipid membranes for electrophysiological characterization. Nat. Protoc. 10, 188–198 (2015).

    Article  PubMed  Google Scholar 

  32. Frolov, V.A., Lizunov, V.A., Dunina-Barkovskaya, A.Y., Samsonov, A.V. & Zimmerberg, J. Shape bistability of a membrane neck: a toggle switch to control vesicle content release. Proc. Natl. Acad. Sci. USA 100, 8698–8703 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Linley, J.E. Perforated whole-cell patch-clamp recording. Methods Mol. Biol. 998, 149–157 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Dresselhaus, M.S. & Saito, R. Physical Properties of Carbon Nanotubes (Imperial College Press, 1998).

  35. Dellago, C. & Hummer, G. Kinetics and mechanism of proton transport across membrane nanopores. Phys. Rev. Lett. 97, 245901 (2006).

    Article  PubMed  CAS  Google Scholar 

  36. Hummer, G. Water, proton, and ion transport: from nanotubes to proteins. Mol. Phys. 105, 201–207 (2007).

    Article  CAS  Google Scholar 

  37. Flavel, B.S., Moore, K.E., Pfohl, M., Kappes, M.M. & Hennrich, F. Separation of single-walled carbon nanotubes with a gel permeation chromatography system. ACS Nano 8, 1817–1826 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Arnold, M.S., Green, A.A., Hulvat, J.F., Stupp, S.I. & Hersam, M.C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotech. 1, 60–65 (2006).

    Article  CAS  Google Scholar 

  39. Arnold, M.S., Stupp, S.I. & Hersam, M.C. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 5, 713–718 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Moshammer, K., Hennrich, F. & Kappes, M.M. Selective suspension in aqueous sodium dodecyl sulfate according to electronic structure type allows simple separation of metallic from semiconducting single-walled carbon nanotubes. Nano Res. 2, 599–606 (2009).

    Article  CAS  Google Scholar 

  41. Antonov, V., Petrov, V., Molnar, A., Predvoditelev, D. & Ivanov, A. The appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition temperature. Nature 283, 585–586 (1980).

    Article  CAS  PubMed  Google Scholar 

  42. Neher, E. & Sakmann, B. Single-channel Recording (Plenum Press, 1995).

  43. Mueller, P., Rudin, D.O., Ti Tien, H. & Wescott, W.C. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194, 979–980 (1962).

    Article  CAS  PubMed  Google Scholar 

  44. Melikov, K.C., Samsonov, A.V., Pirutin, S.K. & Frolov, V.A. Study of conductance changes of bilayer lipid membrane induced by electric field. Membr. Cell Biol. 13, 121–130 (1999).

    CAS  PubMed  Google Scholar 

  45. Tunuguntla, R.H., Allen, F.I., Kim, K., Belliveau, A. & Noy, A. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nat. Nanotechnol. 11, 639–644 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Desai, S.A., Bezrukov, S.M. & Zimmerberg, J.A Voltage-dependent channel involved in nutrient uptake by red blood cells infected with the malaria parasite. Nature 406, 1001–1005 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Mortensen, M. & Smart, T.G. Single-channel recording of ligand-gated ion channels. Nat. Protoc. 2, 2826–2841 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Kim, J. Zhang, and J. Geng for developing some of the initial CNTP synthesis and testing protocols; L. Comolli, F.I. Allen, and Y. Wang for acquiring the cryo-TEM and HR-TEM images of CNTPs; and A.V. Shnyrova for assistance in the development of CNTP-in-BLM protocols and critical reading of the manuscript. Parts of this work were supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (characterization and transport studies), and the LDRD program at LLNL, 12-ERD-073 (synthesis). Work at LLNL was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract DE-AC02-05CH11231. Work at the Biofisika Institute (CSIC, UPV/EHU) was supported by the Spanish Ministry of Economy and Competitiveness (grant BIO2013-49843-EXP).

Author information

Authors and Affiliations

Authors

Contributions

R.H.T. and A.N. developed the protocol for optimized CNTP preparation procedure and assays for CNTP characterization. A.E. and V.A.F. developed the protocols for optimized single-CNTP conductance measurement assays and CNTP incorporation into live cells. All authors contributed to data analysis, discussion, and manuscript preparation.

Corresponding author

Correspondence to Aleksandr Noy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunuguntla, R., Escalada, A., A Frolov, V. et al. Synthesis, lipid membrane incorporation, and ion permeability testing of carbon nanotube porins. Nat Protoc 11, 2029–2047 (2016). https://doi.org/10.1038/nprot.2016.119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.119

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing