Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A screening-based platform for the assessment of cellular respiration in Caenorhabditis elegans

Abstract

Mitochondrial dysfunction is at the core of many diseases ranging from inherited metabolic diseases to common conditions that are associated with aging. Although associations between aging and mitochondrial function have been identified using mammalian models, much of the mechanistic insight has emerged from Caenorhabditis elegans. Mitochondrial respiration is recognized as an indicator of mitochondrial health. The Seahorse XF96 respirometer represents the state-of-the-art platform for assessing respiration in cells, and we adapted the technique for applications involving C. elegans. Here we provide a detailed protocol to optimize and measure respiration in C. elegans with the XF96 respirometer, including the interpretation of parameters and results. The protocol takes 2 d to complete, excluding the time spent culturing C. elegans, and it includes (i) the preparation of C. elegans samples, (ii) selection and loading of compounds to be injected, (iii) preparation and execution of a run with the XF96 respirometer and (iv) postexperimental data analysis, including normalization. In addition, we compare our XF96 application with other existing techniques, including the eight-well Seahorse XFp. The main benefits of the XF96 include the limited number of worms required and the high throughput capacity due to the 96-well format.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic overview of glycolysis and oxidative phosphorylation.
Figure 2: The measurement units of XF respirometers.
Figure 3: Distinguishing non-mitochondrial respiration from mitochondrial respiration.
Figure 4: Temperature does not influence the OCR of C. elegans.
Figure 5: A schematic overview of an XF respirometer experiment.
Figure 6: Respiration rates change during development and with age in C. elegans.
Figure 7: Typical example of OCR profiles in C. elegans respirometry.
Figure 8: Detailed tracing of oxygen levels is required to identify experimental issues.
Figure 9: The OCR correlates with the number of worms.
Figure 10: The effects of specific compounds on the OCR in C. elegans.
Figure 11: Genetic manipulation of the electron transport chain lowers the OCR in C. elegans.
Figure 12: XFp respirometers provide an alternative to XF96 respirometers.

Similar content being viewed by others

References

  1. Perry, C.G.R., Kane, D.A., Lanza, I.R. & Neufer, P.D. Methods for assessing mitochondrial function in diabetes. Diabetes 62, 1041–1053 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hatefi, Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu. Rev. Biochem. 54, 1015–1069 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Brand, M.D. & Nicholls, D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 435, 297–312 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Goldenthal, M.J. & Marín-García, J. Mitochondrial signaling pathways: a receiver/integrator organelle. Mol. Cell Biochem. 262, 1–16 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Galluzzi, L., Kepp, O. & Kroemer, G. Mitochondria: master regulators of danger signalling. Nat. Rev. Mol. Cell Biol. 13, 780–788 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Rizzuto, R., De Stefani, D., Raffaello, A. & Mammucari, C. Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 13, 566–578 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Fernyhough, P., Roy Chowdhury, S.K. & Schmidt, R.E. Mitochondrial stress and the pathogenesis of diabetic neuropathy. Expert Rev. Endocrinol. Metab. 5, 39–49 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferreira, I.L., Resende, R., Ferreiro, E., Rego, A.C. & Pereira, C.F. Multiple defects in energy metabolism in Alzheimer's disease. Curr. Drug Targets 11, 1193–1206 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Jarrett, S.F., Lewin, A.S. & Boulton, M.E. The importance of mitochondria in age-related and inherited eye disorders. Opthalmic Res. 44, 179–190 (2010).

    Article  CAS  Google Scholar 

  10. Kawamata, H. & Manfredi, G. Mitochondrial dysfunction and intracellular calcium dysregulation in ALS. Mech. Ageing Dev. 131, 517–526 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ren, J., Pulakat, L., Whaley-Connell, A. & Sowers, J.R. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J. Mol. Med. 88, 993–1001 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Rosenstock, T.R., Duarte, A.I. & Rego, A.C. Mitochondrial-associated metabolic changes and neurodegeneration in Huntington's disease – from clinical features to the bench. Curr. Drug Targets 11, 1218–1236 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Vafai, S.B. & Mootha, V.K. Mitochondrial disorders as windows into an ancient organelle. Nature 491, 374–383 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Andreux, P.A., Houtkooper, R.H. & Auwerx, J. Pharmacological approaches to restore mitochondrial function. Nat. Rev. Drug Discov. 12, 465–483 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Andreux, P.A. et al. A method to identify and validate mitochondrial modulators using mammalian cells and the worm C. elegans. Sci. Rep. 4, 05285 (2014).

    Article  CAS  Google Scholar 

  16. Felkai, S. et al. CLK-1 controls respiration, behaviour and aging in the nematode Caenorhabditis elegans. EMBO J. 18, 1783–1792 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kamo, N., Muratsugu, M., Hongoh, R. & Kobatake, Y. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J. Membr. Biol. 49, 105–121 (1979).

    Article  CAS  PubMed  Google Scholar 

  18. Drew, B. & Leeuwenburgh, C. Method for measuring ATP production in isolated mitochondria: ATP production in brain and liver mitochondria of Fischer-344 rats with age and caloric restriction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R1259–R1267 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Pan, X. et al. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat. Cell Biol. 15, 1464–1472 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chance, B. & Williams, G.R. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J. Biol. Chem. 217, 383–393 (1955).

    Article  CAS  PubMed  Google Scholar 

  21. Wu, M. et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetics function and enhanced glycolysis dependency in human tumor cells. Am. J. Physiol. Cell Physiol. 292, C125–C136 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Gerencser, A.A. et al. Quantitative microplate-based respirometry with correction for oxygen diffusion. Anal. Chem. 81, 6868–6878 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Will, Y., Hynes, J., Ogurtsov, V.I. & Papkovsky, D.B. Analysis of mitochondrial function using phosphorescent oxygen-sensitive probes. Nat. Protoc. 1, 2563–2572 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Nadanaciva, S. et al. Assessment of drug-induced mitochondrial dysfunction via altered cellular respiration and acidification measured in 96-well platform. J. Bioenerg. Biomembr. 44, 421–437 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Yamamoto, H. et al. NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 147, 827–839 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Houtkooper, R.H. et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497, 451–457 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mouchiroud, L. et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luz, A.L. et al. Mitochondrial morphology and fundamental parameters of the mitochondrial respiratory chain are altered in Caenorhabditis elegans strains deficient in mitochondrial dynamics and homeostasis processes. PLoS One 10, e0130940 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Lee, S.S. et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat. Genet. 33, 40–48 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. Fire, A.Z. Gene silencing by double-stranded RNA. Cell Death Differ. 14, 1998–2012 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Grishok, A., Tabara, H. & Mello, C.C. Genetic requirements for inheritance of RNAi in C. elegans. Science 287, 2494–2497 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Dickinson, D.J., Ward, J.D., Reiner, D.J. & Goldstein, B. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat. Methods 10, 1028–1034 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wadsworth, W.G. & Riddle, D.L. Developmental regulation of energy metabolism in Caenorhabditis elegans. Dev. Biol. 132, 167–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Li, J. et al. Proteomics analysis of mitochondria from Caenorhabditis elegans. Proteomics 9, 4539–4554 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Mullaney, B.C. & Ashrafi, K. C. elegans fat storage and metabolic regulation. Biochim. Biophys. Acta 1791, 474–478 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dancy, B.M., Sedensky, M.M. & Morgan, P.G. Mitochondrial bioenergetics and disease in Caenorhabditis elegans. Front Biosci. (Landmark Ed.) 20, 198–228 (2015).

    Article  CAS  Google Scholar 

  37. Hill, B.G., Dranka, B.P., Zou, L., Chatham, J.C. & Darley-Usmar, V.M. Importance of the bioenergetics reserve capacity in response to cardiomyocyte stress induced by 4-hydroxynonenal. Biochem. J. 424, 99–107 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Dranka, B.P. et al. Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free. Radic. Biol. Med. 51, 1621–1635 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sansbury, B.E., Jones, S.P., Riggs, D.W., Darley-Usmar, V.M. & Hill, B.G. Bioenergetic function in cardiovascular cells: the importance of the reserve capacity and its biological regulation. Chem. Biol. Interact. 191, 288–295 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Readnower, R.D., Brainard, R.E., Hill, B.G. & Jones, S.P. Standardized bioenergetics profiling of adult mouse cardiomyocytes. Physiol. Genomics 44, 1208–1213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wilson, D.F., Vinogradov, S., Lo, L.W. & Huang, L. Oxygen dependent quenching of phosphorescence: a status report. Adv. Exp. Med. Biol. 388, 101–107 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Schulz, T.J. et al. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 6, 280–293 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Ehrismann, D. et al. Studies on the activity of the hypoxia-inducible-factor hydroxylases using an oxygen consumption assay. Biochem. J. 401, 227–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Rand, J.B. & Johnson, C.D. Genetic pharmacology: interactions between drugs and gene products in Caenorhabditis elegans. Methods Cell Biol. 48, 187–204 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Burns, A.R. et al. A predictive model for drug bioaccumulation and bioactivity in Caenorhabditis elegans. Nat. Chem. Biol. 6, 549–557 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Zheng, S.-Q., Ding, A.-J., Li, G.-P., Wu, G.-S. & Luo, H.-R. Drug absorption efficiency in Caenorhabditis elegans delivered by different methods. PLoS One 8, e56877 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Massie, M.R., Lapoczka, E.M., Boggs, K.D., Stine, K.E. & White, G.E. Exposure to the metabolic inhibitor sodium azide induces stress protein expression and thermotolerance in the nematode Caenorhabditis elegans. Cell Stress Chaperones 8, 1–7 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lanza, I.R. & Nair, K.S. Functional assessment of isolated mitochondria in vivo. Methods Enzymol. 457, 349–372 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Salabei, J.K., Gibb, A.A. & Hill, B.G. Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nat. Protoc. 9, 421–438 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Piper, H.M. et al. Development of ischemia-induced damage in defined mitochondrial subpopulations. J. Mol. Cell Cardio. 17, 885–896 (1985).

    Article  CAS  Google Scholar 

  51. Picard, M. et al. Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers. Aging Cell 9, 1032–1046 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Picard, M. et al. Mitochondrial structure and function are disrupted by standard isolation methods. PLoS One 6, e18317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Picard, M., Taivassalo, T., Gouspillou, G. & Hepple, R.T. Mitochondria: isolation, structure and function. J. Physiol. 598, 4413–4421 (2011).

    Article  CAS  Google Scholar 

  54. Kayser, E.B., Morgan, P.G., Hoppel, C.L. & Sedensky, M.M. Mitochondrial expression and function of GAS-1 in Caenorhabditis elegans. J. Biol. Chem. 276, 20551–20558 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Rivera-Ingraham, G.A., Bickmeyer, U. & Abele, D. The physiological response of the marine platyhelminth Macrostomum ligano to different environmental oxygen concentrations. J. Exp. Biol. 216, 2741–2751 (2013).

    CAS  PubMed  Google Scholar 

  56. Steele, S.L., Prykhozhij, S.V. & Berman, J.N. Zebrafish as a model system for mitochondrial biology and diseases. Transl. Res. 163, 79–98 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Gibert, Y., McGee, S.L. & Ward, A.C. Metabolic profile analysis of zebrafish embryos. J. Vis. Exp. 14, e4300 (2013).

    Google Scholar 

  58. Hartman, N. et al. Mitochondrial DNA copy number and function decrease with age in the short-lived fish Nothobranchius furzeri. Aging Cell 10, 824–831 (2011).

    Article  CAS  Google Scholar 

  59. Porta-de-la-Riva, M., Fontrodona, L., Villanueva, A. & Cerón, J. Basic Caenorhabditis elegans methods: synchronization and observation. J. Vis. Exp. 10, e4019 (2012).

    Google Scholar 

  60. Mitchell, D.H., Stiles, J.W., Santelli, J. & Sanadi, D.R. Synchronous growth and aging of Caenorhabditis elegans in the presence of fluorodeoxyuridine. J. Gerontol. 34, 28–36 (1979).

    Article  CAS  PubMed  Google Scholar 

  61. Davies, S.K., Leroi, A.M. & Bundy, J.G. Fluorodeoxyuridine affects the identification of metabolic responses to daf-2 status in Caenorhabditis elegans. Mech. Ageing Dev. 133, 46–49 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Rooney, J.P. et al. Effects of 5'-fluoro-2-deoxyuridine on mitochondrial biology in Caenorhabditis elegans. Exp. Gerontol. 56, 69–76 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Gruber, J., Ng, L.F., Poovathingsal, S.K. & Halliwell, B. Deceptively simple but simply deceptive – Caenorhabditis elegans lifespan studies: consideration for aging and antioxidant effects. FEBS Lett. 583, 3377–3387 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Boyd, W.A. et al. A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicol. Appl. Pharmacol. 245, 153–159 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zubovych, I.O., Straud, S. & Roth, M.G. Mitochondrial dysfunction confers resistance to multiple drugs in Caenorhabditis elegans. Mol. Biol. Cell 21, 956–969 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu, Y. et al. Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell 158, 1415–1430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Weimer, S. et al. D-glucosamine supplementation extends life span of nematodes and ageing mice. Nat. Commun. 5, 3563 (2014).

    Article  PubMed  CAS  Google Scholar 

  68. Partridge, F.A., Tearle, A.W., Gravato-Nobre, M.J., Schafer, W.R. & Hodgkin, J. The C. elegans glycosyltransferase BUS-8 has two distinct and essential roles in epidermal morphogenesis. Dev. Biol. 317, 549–559 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. MacVicar, T.D. & Lane, J.D. Impaired OMA1-dependent cleavage of OPA1 and reduced DRP1 fission activity combine to prevent mitophagy in cells that are dependent on oxidative phosphorylation. J. Cell Sci. 127, 2313–2325 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Fraser, A. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Kamath, R.S. et al. Systematic functional analysis of the C. elegans genome using RNAi. Nature 421, 231–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Stiernagle, T. Maintenance of C. elegans. in WormBook (ed. The C. elegans Research Community) doi:10.1895/wormbook.1.101.1 (2006).

  73. Dancy, B.M. et al. Glutathione S-transferase mediates an ageing response to mitochondrial dysfunction. Mech. Ageing Dev. 153, 14–21 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Ackermann for advice and C.F. Calkhoven for allowing us to make use of the Seahorse XF96 machine. Work in the Nollen group is financially supported by an European Research Council (ERC) starting grant (no. 281622). Work in the Houtkooper group is financially supported by an ERC starting grant (no. 638290) and a VIDI grant from ZonMw (no. 91715305). The Seahorse XF96 at the Academic Medical Center, Amsterdam, the Netherlands, was supported by a grant from NWO-Middelgroot (no. 91112009).

Author information

Authors and Affiliations

Authors

Contributions

M.K. performed most of the experiments, optimized the final experimental pipeline and wrote the manuscript together with R.H.H., and with contributions from all authors. H.M. and R.K performed experiments using the XFp/XF96 respirometers. L.M., R.H.H., B.M.D. and J.A. pioneered the use of XF respirometers with C. elegans and developed the initial protocols. M.K., H.M., E.A.A.N., B.M.D. and R.H.H. have been extensively involved in discussions and interpretations of results.

Corresponding authors

Correspondence to Mandy Koopman or Riekelt H Houtkooper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Titration of antimycin A and rotenone

(a) Titration of Antimycin A, n = 8-12 wells, and (b) Antimycin A & Rotenone, 8-16 wells, does not decrease the OCR. One-way ANOVA (ns). Bars are mean ± SEM.

Supplementary Figure 2 Respiration rate of E.coli.

Respiration rates of 15 worms compared to E. coli measured with a XFp respirometer. The respiration of E. coli is clearly lower than the respiration of worms. Bars are mean ± SEM.

Supplementary Figure 3 XF96 plate layout

This figure shows a representative plate layout that can be filled in for pre- and post-experimental preparation and analysis.

Supplementary Figure 4 Respiration correlates with the number of worms

Linear regression of the OCR as dependent variable of the number of worms in (a) L4s, (b) Adult day 3, (c) Adult day 5 and (d) Adult day 8. Grey area shows the confidence interval (95%). The dotted line in a-d shows the linear regression, n = 44-48 in a-d.

Supplementary information

Supplementary Information

Supplementary Figures 1–4 (PDF 542 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koopman, M., Michels, H., Dancy, B. et al. A screening-based platform for the assessment of cellular respiration in Caenorhabditis elegans. Nat Protoc 11, 1798–1816 (2016). https://doi.org/10.1038/nprot.2016.106

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.106

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing