Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Single cell–resolution western blotting

Abstract

This protocol describes how to perform western blotting on individual cells to measure cell-to-cell variation in protein expression levels and protein state. Like conventional western blotting, single-cell western blotting (scWB) is particularly useful for protein targets that lack selective antibodies (e.g., isoforms) and in cases in which background signal from intact cells is confounding. scWB is performed on a microdevice that comprises an array of microwells molded in a thin layer of a polyacrylamide gel (PAG). The gel layer functions as both a molecular sieving matrix during PAGE and a blotting scaffold during immunoprobing. scWB involves five main stages: (i) gravity settling of cells into microwells; (ii) chemical lysis of cells in each microwell; (iii) PAGE of each single-cell lysate; (iv) exposure of the gel to UV light to blot (immobilize) proteins to the gel matrix; and (v) in-gel immunoprobing of immobilized proteins. Multiplexing can be achieved by probing with antibody cocktails and using antibody stripping/reprobing techniques, enabling detection of 10+ proteins in each cell. We also describe microdevice fabrication for both uniform and pore-gradient microgels. To extend in-gel immunoprobing to gels of small pore size, we describe an optional gel de-cross-linking protocol for more effective introduction of antibodies into the gel layer. Once the microdevice has been fabricated, the assay can be completed in 4–6 h by microfluidic novices and it generates high-selectivity, multiplexed data from single cells. The technique is relevant when direct measurement of proteins in single cells is needed, with applications spanning the fundamental biosciences to applied biomedicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-cell western blotting (scWB) workflow and principles.
Figure 2: Real-time imaging of in-well chemical lysis of GFP-expressing U373 glioblastoma cells (U373-GFP).
Figure 3: Selection of suitable PAGE separation conditions.
Figure 4: One-step grayscale photopatterning of a scWB device creates 1-mm-long pore-gradient microgels, with each large-to-small-pore-size gel aligned to a microwell.
Figure 5: Optimization of PAGE separation performance depends on the scWB device geometry and electrical interfacing.
Figure 6: scWB PAG slide fabrication.
Figure 7: Pore-gradient PAG slide fabrication.
Figure 8: Examples of poor and ideal single-cell settling into microwells.
Figure 9: Handling of the scWB device during immunoprobing.
Figure 10: The scWB image analysis workflow.
Figure 11: scWB reports GAPDH and βTub expression in single U373 glioblastoma cells.
Figure 12: Comparison of uniform versus pore-gradient scWB readouts.

Similar content being viewed by others

References

  1. Wang, J., Fan, H.C., Behr, B. & Quake, S.R. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150, 402–412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chang, H.H., Hemberg, M., Barahona, M., Ingber, D.E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544–547 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cohen, A.A. et al. Dynamic proteomics of individual cancer cells in response to a drug. Science 322, 1511–1516 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Pushkarsky, I. et al. Automated single-cell motility analysis on a chip using lensfree microscopy. Sci. Rep. 4, 4717 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Toriello, N.M. et al. Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proc. Natl. Acad. Sci. USA 105, 20173–20178 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Duncombe, T.A., Tentori, A.M. & Herr, A.E. Microfluidics: reframing biological enquiry. Nat. Rev. Mol. Cell Biol. 16, 554–567 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marcus, J.S., Anderson, W.F. & Quake, S.R. Microfluidic single-cell mRNA isolation and analysis. Anal. Chem. 78, 3084–3089 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Bose, S. et al. Scalable microfluidics for single cell RNA printing and sequencing. Genome Biol. 16, 120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fan, H.C., Fu, G.K. & Fodor, S.P.A. Combinatorial labeling of single cells for gene expression cytometry. Science 347, 1258367 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. White, A.K. et al. High-throughput microfluidic single-cell RT-qPCR. Proc. Natl. Acad. Sci. USA 108, 13999–14004 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Streets, A.M. et al. Microfluidic single-cell whole-transcriptome sequencing. Proc. Natl. Acad. Sci. USA 111, 7048–7053 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu, M. et al. RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature 487, 510–513 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karabacak, N.M. et al. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat. Protoc. 9, 694–710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vogel, C. et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol. Syst. Biol. 6, 1–9 (2010).

    Article  CAS  Google Scholar 

  15. Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D.A. & Nolan, G.P. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Rowat, A.C., Bird, J.C., Agresti, J.J., Rando, O.J. & Weitz, D.A. Tracking lineages of single cells in lines using a microfluidic device. Proc. Natl. Acad. Sci. USA 106, 18149–18154 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hughes, A.J. et al. Single-cell western blotting. Nat. Methods 11, 749–755 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kang, C.-C., Lin, J.-M.G., Xu, Z., Kumar, S. & Herr, A.E. Single-cell western blotting after whole-cell imaging to assess cancer chemotherapeutic response. Anal. Chem. 86, 10429–10436 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Begley, C.G. & Ellis, L.M. Drug development: raise standards for preclinical cancer research. Nature 483, 531–533 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Stadler, C. et al. Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat. Methods 10, 315–323 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Egelhofer, T.A. et al. An assessment of histone-modification antibody quality. Nat. Struct. Mol. Biol. 18, 91–93 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Delom, F. & Chevet, E. Phosphoprotein analysis: from proteins to proteomes. Proteome Sci. 4, 15 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hughes, A.J. & Herr, A.E. Microfluidic western blotting. Proc. Natl. Acad. Sci. USA 109, 21450–21455 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hughes, A.J., Lin, R.K.C., Peehl, D.M. & Herr, A.E. Microfluidic integration for automated targeted proteomic assays. Proc. Natl. Acad. Sci. USA 109, 5972–5977 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Duncombe, T.A. & Herr, A.E. Photopatterned free-standing polyacrylamide gels for microfluidic protein electrophoresis. Lab Chip 13, 2115–2123 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Duncombe, T.A. et al. Hydrogel pore-size modulation for enhanced single-cell western blotting. Adv. Mater. 28, 327–334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vlassakis, J. & Herr, A.E. Effect of polymer hydration state on in-gel immunoassays. Anal. Chem. 87, 11030–11038 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dormán, G. & Prestwich, G.D. Benzophenone photophores in biochemistry. Biochemistry 33, 5661–5673 (1994).

    Article  PubMed  Google Scholar 

  30. Burry, R.W. Controls for immunocytochemistry: an update. J. Histochem. Cytochem. 59, 6–12 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ng, A.H.C., Chamberlain, M.D., Situ, H., Lee, V. & Wheeler, A.R. Digital microfluidic immunocytochemistry in single cells. Nat. Commun. 6, 7513 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Perfetto, S.P., Chattopadhyay, P.K. & Roederer, M. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 4, 648–655 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Shapiro, H.M. Practical Flow Cytometry (John Wiley & Sons, 2005).

  34. Bandura, D.R. et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813–6822 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Fredriksson, S. et al. Protein detection using proximity-dependent DNA ligation assays. Nat. Biotechnol. 20, 473–477 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Shi, Q. et al. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc. Natl. Acad. Sci. USA 109, 419–424 (2012).

    Article  PubMed  Google Scholar 

  37. Lu, Y. et al. High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity. Anal. Chem. 85, 2548–2556 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stack, E.C., Wang, C., Roman, K.A. & Hoyt, C.C. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70, 46–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Gerdes, M.J. et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl. Acad. Sci. USA 110, 11982–11987 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lu, Y. et al. Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proc. Natl. Acad. Sci. 112, E607–E615 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Darmanis, S. et al. Simultaneous multiplexed measurement of RNA and proteins in single cells. Cell Rep. 14, 380–389 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, D. & Bodovitz, S. Single cell analysis: the new frontier in 'omics'. Trends Biotechnol. 28, 281–290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, W., Li, F. & Nie, L. Integrating multiple 'omics' analysis for microbial biology: application and methodologies. Microbiology 156, 287–301 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Weibrecht, I. et al. In situ detection of individual mRNA molecules and protein complexes or post-translational modifications using padlock probes combined with the in situ proximity ligation assay. Nat. Protoc. 8, 355–372 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Brahic, M., Haase, A.T. & Cash, E. Simultaneous in situ detection of viral RNA and antigens. Proc. Natl. Acad. Sci. USA 81, 5445–5448 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fienberg, H.G., Simonds, E.F., Fantl, W.J., Nolan, G.P. & Bodenmiller, B. A platinum-based covalent viability reagent for single-cell mass cytometry. Cytometry 81A, 467–475 (2012).

    Article  CAS  Google Scholar 

  47. Behbehani, G.K., Bendall, S.C., Clutter, M.R., Fantl, W.J. & Nolan, G.P. Single-cell mass cytometry adapted to measurements of the cell cycle. Cytometry 81A, 552–566 (2012).

    Article  Google Scholar 

  48. Zhang, Y. et al. Single-cell codetection of metabolic activity, intracellular functional proteins, and genetic mutations from rare circulating tumor cells. Anal. Chem. 87, 9761–9768 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Xue, M. et al. Chemical methods for the simultaneous quantitation of metabolites and proteins from single cells. J. Am. Chem. Soc. 137, 4066–4069 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rodbard, D., Kapadiia, G. & Chrambach, A. Pore gradient electrophoresis. Anal. Biochem. 157, 135–157 (1971).

    Article  Google Scholar 

  51. Li, J.J., Bickel, P.J. & Biggin, M.D. System wide analyses have underestimated protein abundances and the importance of transcription in mammals. PeerJ 2, e270 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tong, J. & Anderson, J.L. Partitioning and diffusion of proteins and linear polymers in polyacrylamide gels. Biophys. J. 70, 1505–1513 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Morris, C.J. & Morris, P. Molecular-sieve chromatography and electrophoresis in polyacrylamide gels. Biochem. J. 124, 517–528 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tanaka, T. et al. Mechanical instability of gels at the phase transition. Nature 325, 796–798 (1987).

    Article  CAS  Google Scholar 

  55. Go, Y.M. & Jones, D.P. Redox compartmentalization in eukaryotic cells. Biochim. Biophys. Acta 1780, 1273–1290 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Margolis, J. & Kenrick, K.G. Polyacrylamide gel-electrophoresis across a molecular sieve gradient. Nature 214, 1334–1336 (1967).

    Article  CAS  PubMed  Google Scholar 

  57. Ebersole, R.C. & Foss, R.P., inventors. Porosity gradient electrophoresis gel. U.S Pat. 4,704,198 (1987).

  58. Swinney, K. & Bornhop, D.J. Quantification and evaluation of Joule heating in on-chip capillary electrophoresis. Electrophoresis 23, 613–620 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Petersen, N.J., Nikolajsen, R.P.H., Mogensen, K.B. & Kutter, J.P. Effect of Joule heating on efficiency and performance for microchip-based and capillary-based electrophoretic separation systems: A closer look. Electrophoresis 25, 253–269 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Pan, Y., Duncombe, T.A., Kellenberger, C.A., Hammond, M.C. & Herr, A.E. High-throughput electrophoretic mobility shift assays for quantitative analysis of molecular binding reactions. Anal. Chem. 86, 10357–10364 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Torsvik, A. et al. U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells. Cancer Med. 3, 812–824 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Timerman, D. & Yeung, C.M. Identity confusion of glioma cell lines. Gene 536, 221–222 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Madren, S.M. et al. Microfluidic device for automated synchronization of bacterial cells. Anal. Chem. 84, 8571–8578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Na, S. et al. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc. Natl. Acad. Sci. USA 105, 6626–6631 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Henjes, F. et al. Strong EGFR signaling in cell line models of ERBB2-amplified breast cancer attenuates response towards ERBB2-targeting drugs. Oncogenesis 1, e16 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Giddings, J.C. Unified Separation Science 97–101 (John Wiley & Sons, 1991).

    Google Scholar 

  67. Bendall, S.C., Nolan, G.P., Roederer, M. & Chattopadhyay, P.K. A deep profiler's guide to cytometry. Trends Immunol. 33, 323–332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ornatsky, O.I. et al. Study of cell antigens and intracellular DNA by identification of element-containing labels and metallointercalators using inductively coupled plasma mass spectrometry. Anal. Chem. 80, 2539–2547 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Albayrak, C. et al. Digital quantification of proteins and mRNA in single mammalian cells. Mol. Cell 61, 914–924 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Leuchowius, K.-J., Weibrecht, I. & Söderberg, O. In situ proximity ligation assay for microscopy and flow cytometry. Curr. Protoc. Cytom. Chapter 9 Unit 9.36 (2011).

  71. Gawad, S., Schild, L. & Renaud, P.H. Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 1, 76–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Porichis, F. et al. High-throughput detection of miRNAs and gene-specific mRNA at the single-cell level by flow cytometry. Nat. Commun. 5, 5641 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported in part by the National Cancer Institute of the National Institutes of Health (R21CA183679 to A.E.H.), a New Innovator Award from the National Institutes of Health (1DP2OD007294 to A.E.H.), an NSF CAREER award from the National Science Foundation (CBET-1056035 to A.E.H.), a Diversity Supplement from the National Institutes of Health (to E.S.) and National Science Foundation Graduate Research Fellowships (DGE 1106400 to K.A.Y., J.V. and T.A.D.). We are grateful to S. Kumar's laboratory in the Department of Bioengineering, University of California, Berkeley, for providing the U373 MG and U373-GFP cell lines. We acknowledge the helpful feedback from students enrolled in the 2015 Single Cell Analysis course at Cold Spring Harbor Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the experiments. C.-C.K., K.A.Y., J.V. and E.S. performed the experiments. C.-C.K. and T.A.D. performed the data analysis. All authors wrote the manuscript.

Corresponding author

Correspondence to Amy E Herr.

Ethics declarations

Competing interests

All co-authors are co-inventors on intellectual property related to the device and assay described here and may benefit from royalties from licensing.

Integrated supplementary information

Supplementary Figure 1 Dimensioned scWB silicon wafer mold drawing.

Example wafer mold design for the scWB. The wafers are fabricated using standard photolithography techniques with SU-8 2025 photoresist. As SU-8 2025 is a negative photoresist, regions of the mask containing features to be polymerized (e.g. the micropillars) should be transparent. The photomasks are printed on mylar.

Supplementary Figure 2 Dimensioned drawing of the scWB electrophoresis chamber.

The scWB electrophoresis chamber is fabricated out of Acrylonitrile butadiene styrene with a fused deposition molding 3D printer (e.g. MakerBot Replicator 2x). The chamber was printed with the cavity facing up and with a raft composed of dissolvable filament. The solid models was produced in SolidWorks and preprocessed in MakerWare.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Note and Supplementary Table 1 (PDF 523 kb)

Supplementary Data 1

30-μm Microwells (ZIP 28 kb)

Supplementary Data 2

EPchamber_v01 (ZIP 5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, CC., Yamauchi, K., Vlassakis, J. et al. Single cell–resolution western blotting. Nat Protoc 11, 1508–1530 (2016). https://doi.org/10.1038/nprot.2016.089

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.089

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing