Chemoenzymatic synthesis of the bacterial polysaccharide repeating unit undecaprenyl pyrophosphate and its analogs


Polysaccharides are essential and immunologically relevant components of bacterial cell walls. These biomolecules can be found covalently attached to lipids (e.g., O-polysaccharide (PS) contains undecaprenyl and lipopolysaccharide (LPS) contains lipid A) or noncovalently associated with cell wells (e.g., capsular PS (CPS)). Although extensive genetic studies have indicated that the Wzy-dependent biosynthetic pathway is primarily responsible for producing such polysaccharides, in vitro biochemical studies are needed to determine, for example, which gene product is responsible for catalyzing each step in the pathway, and to reveal molecular details about the Wzx translocase, Wzy polymerase and O-PS chain-length determinant. Many of these biochemical studies require access to a structurally well-defined PS repeating unit undecaprenyl pyrophosphate (RU-PP-Und), the key building block in this pathway. We describe herein the chemoenzymatic synthesis of Escherichia coli (serotype O157) RU-PP-Und. This involves (i) chemical synthesis of precursor N-acetyl-D-galactosamine (GalNAc)-PP-Und (2 weeks) and (ii) enzymatic extension of the precursor to produce RU-PP-Und (2 weeks). Undecaprenyl phosphate and peracetylated GalNAc-1-phosphate are prepared from commercially available undecaprenol and peracetylated GalNAc. The chemical coupling of these two products, followed by structural confirmation (mass spectrometry and NMR) and deprotection, generates GalNAc-PP-Und. This compound is then sequentially modified by enzymes in the E. coli serotype O157 (E. coli O157) O-PS biosynthetic pathway. Three glycosyltransferases (GTs) are involved (WbdN, WbdO and WbdP) and they transfer glucose (Glc), L-fucose (L-Fuc) and N-acetylperosamine (PerNAc) onto GalNAc-PP-Und to form the intact RU-PP-Und in a stepwise manner. Final compounds and intermediates are confirmed by mass spectrometry. The procedure can be adapted to the synthesis of analogs with different PS or lipid moieties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Proposed Wzy-dependent biosynthetic pathway of E. coli O157 LPS.
Figure 2: The E. coli O157 rfb gene cluster.
Figure 3
Figure 4: Experimental design for the enzymatic synthesis of E. coli O157 RU-PP-Und.
Figure 5
Figure 6: Stepwise enzymatic synthesis of E. coli O157 RU-PP-Und.
Figure 7: Activity assay of WaaL.


  1. 1

    Raetz, C.R. & Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Whitfield, C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu. Rev. Biochem. 75, 39–68 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Alexander, C. & Rietschel, E.T. Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res. 7, 167–202 (2001).

    CAS  PubMed  Google Scholar 

  4. 4

    Osborn, M.J. & Weiner, I.M. Biochemical aspects of structure, differentiation and morphogenesis in microorganisms: mechanism of biosynthesis of the lipopolysaccharide of Salmonella. Fed. Proc. 26, 70–76 (1967).

    CAS  PubMed  Google Scholar 

  5. 5

    Whitfield, C. Glycan chain-length control. Nat. Chem. Biol. 6, 403–404 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Amer, A.O. & Valvano, M.A. The N-terminal region of the Escherichia coli WecA (Rfe) protein, containing three predicted transmembrane helices, is required for function but not for membrane insertion. J. Bacteriol. 182, 498–503 (2000).

    CAS  Article  Google Scholar 

  7. 7

    Wang, L., Liu, D. & Reeves, P.R. C-terminal half of Salmonella enterica WbaP (RfbP) is the galactosyl-1-phosphate transferase domain catalyzing the first step of O-antigen synthesis. J. Bacteriol. 178, 2598–2604 (1996).

    CAS  Article  Google Scholar 

  8. 8

    Whitfield, C. & Trent, M.S. Biosynthesis and export of bacterial lipopolysaccharides. Annu. Rev. Biochem. 83, 99–128 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Woodward, R. et al. In vitro bacterial polysaccharide biosynthesis: defining the functions of Wzy and Wzz. Nat. Chem. Biol. 6, 418–423 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Liu, D., Cole, R.A. & Reeves, P.R. An O-antigen processing function for Wzx (RfbX): a promising candidate for O-unit flippase. J. Bacteriol. 178, 2102–2107 (1996).

    CAS  Article  Google Scholar 

  11. 11

    Marolda, C.L., Vicarioli, J. & Valvano, M.A. Wzx proteins involved in biosynthesis of O antigen function in association with the first sugar of the O-specific lipopolysaccharide subunit. Microbiology 150, 4095–4105 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Daniels, C., Vindurampulle, C. & Morona, R. Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/Wzy). Mol. Microbiol. 28, 1211–1222 (1998).

    CAS  Article  Google Scholar 

  13. 13

    Kim, T.H. et al. Characterization of the O-antigen polymerase (Wzy) of Francisella tularensis. J. Biol. Chem. 285, 27839–27849 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Guo, H. et al. Overexpression and characterization of Wzz of Escherichia coli O86:H2. Protein Expr. Purif. 48, 49–55 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Franco, A.V., Liu, D. & Reeves, P.R. A Wzz (Cld) protein determines the chain length of K lipopolysaccharide in Escherichia coli O8 and O9 strains. J. Bacteriol. 178, 1903–1907 (1996).

    CAS  Article  Google Scholar 

  16. 16

    Burrows, L.L., Chow, D. & Lam, J.S. Pseudomonas aeruginosa B-band O-antigen chain length is modulated by Wzz (Ro1). J. Bacteriol. 179, 1482–1489 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Sun, Y. et al. Genetic analysis of the Cronobacter sakazakii O4 to O7 O-antigen gene clusters and development of a PCR assay for identification of all C. sakazakii O serotypes. Appl. Environ. Microbiol. 78, 3966–3974 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Han, W. et al. Defining function of lipopolysaccharide O-antigen ligase WaaL using chemoenzymatically synthesized substrates. J. Biol. Chem. 287, 5357–5365 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Weerapana, E., Glover, K.J., Chen, M.M. & Imperiali, B. Investigating bacterial N-linked glycosylation: synthesis and glycosyl acceptor activity of the undecaprenyl pyrophosphate-linked bacillosamine. J. Am. Chem. Soc. 127, 13766–13767 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Aas, F.E., Vik, A., Vedde, J., Koomey, M. & Egge-Jacobsen, W. Neisseria gonorrhoeae O-linked pilin glycosylation: functional analyses define both the biosynthetic pathway and glycan structure. Mol. Microbiol. 65, 607–624 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Valvano, M.A. Undecaprenyl phosphate recycling comes out of age. Mol. Microbiol. 67, 232–235 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Perlstein, D.L., Zhang, Y., Wang, T.S., Kahne, D.E. & Walker, S. The direction of glycan chain elongation by peptidoglycan glycosyltransferases. J. Am. Chem. Soc. 129, 12674–12675 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Zhang, Y. et al. Synthesis of heptaprenyl-lipid IV to analyze peptidoglycan glycosyltransferases. J. Am. Chem. Soc. 129, 3080–3081 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Ginsberg, C., Zhang, Y.H., Yuan, Y. & Walker, S. In vitro reconstitution of two essential steps in wall teichoic acid biosynthesis. ACS Chem. Biol. 1, 25–28 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Glover, K.J., Weerapana, E., Numao, S. & Imperiali, B. Chemoenzymatic synthesis of glycopeptides with PglB, a bacterial oligosaccharyl transferase from Campylobacter jejuni. Chem. Biol. 12, 1311–1315 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Li, L. et al. Overexpression and topology of bacterial oligosaccharyltransferase PglB. Biochem. Biophys. Res. Commun. 394, 1069–1074 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Musumeci, M.A. et al. In vitro activity of Neisseria meningitidis PglL O-oligosaccharyltransferase with diverse synthetic lipid donors and a UDP-activated sugar. J. Biol. Chem. 288, 10578–10587 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Faridmoayer, A. et al. Extreme substrate promiscuity of the Neisseria oligosaccharyl transferase involved in protein O-glycosylation. J. Biol. Chem. 283, 34596–34604 (2008).

    CAS  Article  Google Scholar 

  29. 29

    Huang, L.Y. et al. Enzymatic synthesis of lipid II and analogues. Angew. Chem. Int. Ed. Engl. 53, 8060–8065 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Gale, R.T., Sewell, E.W., Garrett, T.A. & Brown, E.D. Reconstituting poly (glycerol phosphate) wall teichoic acid biosynthesis in vitro using authentic substrates. Chem. Sci. 5, 3823–3830 (2014).

    CAS  Article  Google Scholar 

  31. 31

    Lebar, M.D. et al. Forming cross-linked peptidoglycan from synthetic gram-negative Lipid II. J. Am. Chem. Soc. 135, 4632–4635 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Huang, S.H. et al. New continuous fluorometric assay for bacterial transglycosylase using Forster resonance energy transfer. J. Am. Chem. Soc. 135, 17078–17089 (2013).

    CAS  Article  Google Scholar 

  33. 33

    Holkenbrink, A., Koester, D.C., Kaschel, J. & Werz, D.B. Total synthesis of α-linked Rha–Rha–Gal undecaprenyl diphosphate found in Geobacillus stearothermophilus. Eur. J. Org. Chem. 2011, 6233–6239 (2011).

    CAS  Article  Google Scholar 

  34. 34

    Wagner, G.K., Pesnot, T. & Field, R.A. A survey of chemical methods for sugar-nucleotide synthesis. Nat. Prod. Rep. 26, 1172–1194 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Thibodeaux, C.J., Melancon, C.E. III & Liu, H.W. Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew Chem. Int. Ed. Engl. 47, 9814–9859 (2008).

    CAS  Article  Google Scholar 

  36. 36

    Gao, Y. et al. Biochemical characterization of WbdN, a β1,3-glucosyltransferase involved in O-antigen synthesis in enterohemorrhagic Escherichia coli O157. Glycobiology 22, 1092–1102 (2012).

    CAS  Article  Google Scholar 

  37. 37

    Yi, W. et al. The wbnH gene of Escherichia coli O86:H2 encodes an a1,3-N-acetylgalactosaminyl transferase involved in the O-repeating unit biosynthesis. Biochem. Biophys. Res. Commun. 344, 631–639 (2006).

    CAS  Article  Google Scholar 

  38. 38

    Brockhausen, I. et al. Characterization of two β1,3-glucosyltransferases from Escherichia coli serotypes O56 and O152. J. Bacteriol. 190, 4922–4932 (2008).

    CAS  Article  Google Scholar 

  39. 39

    Riley, J.G., Xu, C. & Brockhausen, I. Synthesis of acceptor substrate analogs for the study of glycosyltransferases involved in the second step of the biosynthesis of O-antigen repeating units. Carbohydr. Res. 345, 586–597 (2010).

    CAS  Article  Google Scholar 

  40. 40

    Brockhausen, I., Riley, J.G., Joynt, M., Yang, X. & Szarek, W.A. Acceptor substrate specificity of UDP-Gal: GlcNAc-R β1,3-galactosyltransferase (WbbD) from Escherichia coli O7:K1. Glycoconj. J. 25, 663–673 (2008).

    CAS  Article  Google Scholar 

  41. 41

    Xu, C. et al. Biochemical characterization of UDP-Gal:GlcNAc-pyrophosphate-lipid β1,4-Galactosyltransferase WfeD, a new enzyme from Shigella boydii type 14 that catalyzes the second step in O-antigen repeating-unit synthesis. J. Bacteriol. 193, 449–459 (2011).

    CAS  Article  Google Scholar 

  42. 42

    Wang, S. et al. Characterization of two UDP-Gal:GalNAc-diphosphate-lipid β1,3-galactosyltransferases WbwC from Escherichia coli serotypes O104 and O5. J. Bacteriol. 196, 3122–3133 (2014).

    Article  Google Scholar 

  43. 43

    Yi, W. et al. Escherichia coli O86 O-antigen biosynthetic gene cluster and stepwise enzymatic synthesis of human blood group B antigen tetrasaccharide. J. Am. Chem. Soc. 127, 2040–2041 (2005).

    CAS  Article  Google Scholar 

  44. 44

    Engels, L. & Elling, L. WbgL: a novel bacterial a1,2-fucosyltransferase for the synthesis of 2′-fucosyllactose. Glycobiology 24, 170–178 (2014).

    CAS  Article  Google Scholar 

  45. 45

    Yi, W. et al. Characterization of a bacterial β1,3-galactosyltransferase with application in the synthesis of tumor-associated T-antigen mimics. Biochemistry 47, 1241–1248 (2008).

    CAS  Article  Google Scholar 

  46. 46

    Li, M. et al. Identification of a new a1,2-fucosyltransferase involved in O-antigen biosynthesis of Escherichia coli O86:B7 and formation of H-type 3 blood group antigen. Biochemistry 47, 11590–11597 (2008).

    CAS  Article  Google Scholar 

  47. 47

    Li, M. et al. Characterization of a novel a1,2-fucosyltransferase of Escherichia coli O128:b12 and functional investigation of its common motif. Biochemistry 47, 378–387 (2008).

    CAS  Article  Google Scholar 

  48. 48

    Bavaro, M.F. E. coli O157:H7 and other toxigenic strains: the curse of global food distribution. Curr. Gastroenterol. Rep. 14, 317–323 (2012).

    Article  Google Scholar 

  49. 49

    Perry, M.B., MacLean, L. & Griffith, D.W. Structure of the O-chain polysaccharide of the phenol-phase soluble lipopolysaccharide of Escherichia coli O157:H7. Biochem. Cell Biol. 64, 21–28 (1986).

    CAS  Article  Google Scholar 

  50. 50

    Samuel, G., Hogbin, J.P., Wang, L. & Reeves, P.R. Relationships of the Escherichia coli O157, O111, and O55 O-antigen gene clusters with those of Salmonella enterica and Citrobacter freundii, which express identical O antigens. J. Bacteriol. 186, 6536–6543 (2004).

    CAS  Article  Google Scholar 

  51. 51

    Wang, L. & Reeves, P.R. Organization of Escherichia coli O157 O antigen gene cluster and identification of its specific genes. Infect. Immun. 66, 3545–3551 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Branch, C.L., Burton, G. & Moss, S.F. An expedient synthesis of allylic polyprenyl phosphates. Synth. Commun. 29, 2639–2644 (1999).

    CAS  Article  Google Scholar 

  53. 53

    Danilov, L.L., Maltsev, S.D., Shibaev, V.N. & Kochetkov, N.K. Synthesis of polyprenyl pyrophosphate sugars from unprotected mono-and oligo-saccharide phosphates. Carbohydr. Res. 88, 203–211 (1981).

    CAS  Article  Google Scholar 

  54. 54

    Rush, J.S., Alaimo, C., Robbiani, R., Wacker, M. & Waechter, C.J. A novel epimerase that converts GlcNAc-P-P-undecaprenol to GalNAc-P-P-undecaprenol in Escherichia coli O157. J. Biol. Chem. 285, 1671–1680 (2010).

    CAS  Article  Google Scholar 

Download references


This work was supported by the US National Institutes of Health (R01GM085267 and R01AI083754 to P.G.W. and U01GM116263 to P.G.W. and L.L.).

Author information




L.L., R.L.W. and P.G.W. designed the research and developed the methods; L.L., R.L.W. and W.H. performed the experiments; L.L. and R.L.W. wrote the manuscript; and J.Q., J.S. and C.M. revised the manuscript.

Corresponding author

Correspondence to Peng G Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Method 1, Supplementary Method 2, Supplementary Data 1, Supplementary Data 2 (PDF 2175 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, L., Woodward, R., Han, W. et al. Chemoenzymatic synthesis of the bacterial polysaccharide repeating unit undecaprenyl pyrophosphate and its analogs. Nat Protoc 11, 1280–1298 (2016).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing