Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A protocol for the systematic and quantitative measurement of protein–lipid interactions using the liposome-microarray-based assay

Abstract

Lipids organize the activity of the cell's proteome through a complex network of interactions. The assembly of comprehensive atlases embracing all protein–lipid interactions is an important challenge that requires innovative methods. We recently developed a liposome-microarray-based assay (LiMA) that integrates liposomes, microfluidics and fluorescence microscopy and which is capable of measuring protein recruitment to membranes in a quantitative and high-throughput manner. Compared with previous assays that are labor-intensive and difficult to scale up, LiMA improves the protein–lipid interaction assay throughput by at least three orders of magnitude. Here we provide a step-by-step LiMA protocol that includes the following: (i) the serial and generic production of the liposome microarray; (ii) its integration into a microfluidic format; (iii) the measurement of fluorescently labeled protein (either purified proteins or from cell lysate) recruitment to liposomal membranes using high-throughput microscopy; (iv) automated image analysis pipelines to quantify protein–lipid interactions; and (v) data quality analysis. In addition, we discuss the experimental design, including the relevant quality controls. Overall, the protocol—including device preparation, assay and data analysis—takes 6–8 d. This protocol paves the way for protein–lipid interaction screens to be performed on the proteome and lipidome scales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic principle of the liposome-microarray-based assay (LiMA) and protocol flowchart.
Figure 2: Protective sticker preparation (Steps 21–30).
Figure 3: Spotting platform.
Figure 4: Microfluidic channel bonding protocol.
Figure 5: Setup for the injection of sample into the microfluidic device.
Figure 6: Workflow of automated image analysis and data quality control.
Figure 7: Anticipated results.

Similar content being viewed by others

References

  1. van Meer, G., Voelker, D.R. & Feigenson, G.W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Scott, J.D. & Pawson, T. Cell signaling in space and time: where proteins come together and when they're apart. Science 326, 1220–1224 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Leonard, T.A. & Hurley, J.H. Regulation of protein kinases by lipids. Curr. Opin. Struct. Biol. 21, 785–791 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fahy, E. et al. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50 (suppl.), S9–S14 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Babu, M. et al. Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature 489, 585–589 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Lemmon, M.A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9, 99–111 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Wymann, M.P. & Schneiter, R. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol. 9, 162–176 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Saliba, A.E., Vonkova, I. & Gavin, A.C. The systematic analysis of protein-lipid interactions comes of age. Nat. Rev. Mol Cell Biol. 16, 753–761 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Lemmon, M.A., Ferguson, K.M., O'Brien, R., Sigler, P.B. & Schlessinger, J. Specific and high-affinity binding of inositol phosphates to an isolated Pleckstrin homology domain. Proc. Natl. Acad. Sci. USA 92, 10472–10476 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao, H. & Lappalainen, P. A simple guide to biochemical approaches for analyzing protein-lipid interactions. Mol. Biol. Cell 23, 2823–2830 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Besenicar, M., Macek, P., Lakey, J.H. & Anderluh, G. Surface plasmon resonance in protein-membrane interactions. Chem. Phys. Lipids 141, 169–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Haberkant, P. & Holthuis, J.C. Fat & fabulous: bifunctional lipids in the spotlight. Biochim. Biophys. Acta 1841, 1022–1030 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Maeda, K. et al. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature 501, 257–261 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Li, X., Gianoulis, T.A., Yip, K.Y., Gerstein, M. & Snyder, M. Extensive in vivo metabolite-protein interactions revealed by large-scale systematic analyses. Cell 143, 639–650 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Groves, J.T. & Kuriyan, J. Molecular mechanisms in signal transduction at the membrane. Nat. Struct. Mol. Biol. 17, 659–665 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ru, H., Zhang, P. & Wu, H. Promiscuity is not always bad. Mol. Cell 54, 208–209 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moravcevic, K., Oxley, C.L. & Lemmon, M.A. Conditional peripheral membrane proteins: facing up to limited specificity. Structure 20, 15–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Gallego, O. et al. A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae. Mol. Syst. Biol. 6, 430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vonkova, I. et al. Lipid cooperativity as a general membrane-recruitment principle for PH domains. Cell Rep. 12, 1519–1530 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Moravcevic, K. et al. Kinase associated-1 domains drive MARK/PAR1 kinases to membrane targets by binding acidic phospholipids. Cell 143, 966–977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Drin, G. Topological regulation of lipid balance in cells. Annu. Rev. Biochem. 83, 51–77 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Saliba, A.E. et al. A quantitative liposome microarray to systematically characterize protein-lipid interactions. Nat. Methods 11, 47–50 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Walde, P., Cosentino, K., Engel, H. & Stano, P. Giant vesicles: preparations and applications. Chembiochem 11, 848–865 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Horger, K.S., Estes, D.J., Capone, R. & Mayer, M. Films of agarose enable rapid formation of giant liposomes in solutions of physiologic ionic strength. J. Am. Chem. Soc. 131, 1810–1819 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brehme, M. & Vidal, M. A global protein-lipid interactome map. Mol. Syst. Biol. 6, 443 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Niphakis, M.J. et al. A global map of lipid-binding proteins and their ligandability in cells. Cell 161, 1668–1680 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoglinger, D., Nadler, A. & Schultz, C. Caged lipids as tools for investigating cellular signaling. Biochim. Biophys. Acta 1841, 1085–1096 (2014).

    Article  PubMed  CAS  Google Scholar 

  29. Carpten, J.D. et al. A transforming mutation in the Pleckstrin homology domain of AKT1 in cancer. Nature 448, 439–444 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Hammond, G.R., Machner, M.P. & Balla, T. A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. J. Cell Biol. 205, 113–126 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miao, B. et al. Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to Pleckstrin homology domains. Proc. Natl. Acad. Sci. USA 107, 20126–20131 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van den Bogaart, G. et al. Membrane protein sequestering by ionic protein-lipid interactions. Nature 479, 552–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stefl, M. et al. Dynamics and size of cross-linking-induced lipid nanodomains in model membranes. Biophys. J. 102, 2104–2113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hansen, J.S., Thompson, J.R., Helix-Nielsen, C. & Malmstadt, N. Lipid directed intrinsic membrane protein segregation. J. Am. Chem. Soc. 135, 17294–17297 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Horger, K.S. et al. Hydrogel-assisted functional reconstitution of human P-glycoprotein (ABCB1) in giant liposomes. Biochim. Biophys. Acta 1848, 643–653 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Contreras, F.X. et al. Molecular recognition of a single sphingolipid species by a protein's transmembrane domain. Nature 481, 525–529 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Cesar-Razquin, A. et al. A call for systematic research on solute carriers. Cell 162, 478–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Sampaio, J.L. et al. Membrane lipidome of an epithelial cell line. Proc. Natl. Acad. Sci. USA 108, 1903–1907 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsai, F.C., Stuhrmann, B. & Koenderink, G.H. Encapsulation of active cytoskeletal protein networks in cell-sized liposomes. Langmuir 27, 10061–10071 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Xia, Y.N. & Whitesides, G.M. Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998).

    Article  CAS  Google Scholar 

  41. Qin, D., Xia, Y. & Whitesides, G.M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5, 491–502 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Weibel, D.B., Diluzio, W.R. & Whitesides, G.M. Microfabrication meets microbiology. Nat. Rev. Microbiol. 5, 209–218 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Bartolo, D., Degre, G., Nghe, P. & Studer, V. Microfluidic stickers. Lab Chip 8, 274–279 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, E., Xia, Y.N. & Whitesides, G.M. Micromolding in capillaries: applications in materials science. J. Am. Chem. Soc. 118, 5722–5731 (1996).

    Article  CAS  Google Scholar 

  45. Wu, H.K., Huang, B. & Zare, R.N. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. Lab Chip 5, 1393–1398 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Erfle, H. et al. Reverse transfection on cell arrays for high content screening microscopy. Nat. Protoc. 2, 392–399 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Neumann, B. et al. High-throughput RNAi screening by time-lapse imaging of live human cells. Nat. Methods 3, 385–390 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Laufer, C., Fischer, B., Huber, W. & Boutros, M. Measuring genetic interactions in human cells by RNAi and imaging. Nat. Protoc. 9, 2341–2353 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Rouser, G., Fkeischer, S. & Yamamoto, A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5, 494–496 (1970).

    Article  CAS  PubMed  Google Scholar 

  50. Pedelacq, J.D., Cabantous, S., Tran, T., Terwilliger, T.C. & Waldo, G.S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Kotz, K., Cheng, X. & Toner, M. PDMS device fabrication and surface modification. J. Vis. Exp. 8, 319 (2007).

    Google Scholar 

  52. Studier, F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Yamashita, Y., Oka, M., Tanaka, T. & Yamazaki, M. A new method for the preparation of giant liposomes in high salt concentrations and growth of protein microcrystals in them. Biochim. Biophys. Acta 1561, 129–134 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Duffy, D.C., McDonald, J.C., Schueller, O.J. & Whitesides, G.M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the EMBL Advanced Light Microscopy Facility (ALMF), C. Gehin and C. Merten for expert help. We also thank other members of P.B.'s, J.E.'s and A.-C.G.'s groups for continuous discussions and support. This work is partially funded by the DFG in the framework of the Cluster of Excellence, CellNetworks Initiative of the University of Heidelberg (ExIni, EcTop). A.-E.S. is supported by the European Molecular Biology Laboratory and the EU Marie Curie Actions Interdisciplinary Postdoctoral Cofunded Programme.

Author information

Authors and Affiliations

Authors

Contributions

A.-E.S., A.-C.G. and J.E. designed the research. A.-C.G. directed the research. A.-E.S. developed the experimental protocol with the help of I.V. and S.C. A.-E.S., I.V., K.G.K. and C.T. developed the image analysis pipeline. S.D. and P.B. developed the bioinformatics tools.

Corresponding author

Correspondence to Anne-Claude Gavin.

Ethics declarations

Competing interests

A.-E.S., I.V., J.E. and A.-C.G. declare competing financial interests in the form of an international patent application (PCT/EP2013/065256) based on the method LiMA.

Integrated supplementary information

Supplementary Figure 1 Equipment requirement setup.

(a) Glass-slide holder. A home-made glass-slide holder accommodates approx. 20 glass slides with a stirring magnetic bar beneath the glass slides for the washing steps. (b) Spotting rack in a transparent Mylar bag. The spotting rack can be directly plugged in the spotting robot and the lipid solution will be drawn from the vials through the septum. (c) Photo of spotting platform. (d) Photo of the device holder plugged on the microscope.

Supplementary Figure 2 From spotting preparation to spotted-TAL storage.

(a) Photo of the spotting robot. (b-c) After spotting, the protective stickers are removed from the spotted-TALs with tweezers (photo b) and glass slides are removed from the spotting platform (photo c).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2, Supplementary Data 1 (PDF 518 kb)

Supplementary Table 1

Guide for the calculation of lipid compositions of lipid mixtures used for LiMA (XLSX 17 kb)

Supplementary Data 2

Transparency masks for lithography Raw transparency mask files in dxf format, to make microfluidic channels, spotting platform and protective stickers (ZIP 312 kb)

Supplementary Data 3

CellProfiler pipeline and R script rLiMA (ZIP 37288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saliba, AE., Vonkova, I., Deghou, S. et al. A protocol for the systematic and quantitative measurement of protein–lipid interactions using the liposome-microarray-based assay. Nat Protoc 11, 1021–1038 (2016). https://doi.org/10.1038/nprot.2016.059

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.059

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing