Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantification of cancer cell extravasation in vivo

Abstract

Cancer cell 'invasiveness' is one of the main driving forces in cancer metastasis, and assays that quantify this key attribute of cancer cells are crucial in cancer metastasis research. The research goal of many laboratories is to elucidate the signaling pathways and effectors that are responsible for cancer cell invasion, but many of these experiments rely on in vitro methods that do not specifically simulate individual steps of the metastatic cascade. Cancer cell extravasation is arguably the most important example of invasion in the metastatic cascade, whereby a single cancer cell undergoes transendothelial migration, forming invasive processes known as invadopodia to mediate translocation of the tumor cell from the vessel lumen into tissue in vivo. We have developed a rapid, reproducible and economical technique to evaluate cancer cell invasiveness by quantifying in vivo rates of cancer cell extravasation in the chorioallantoic membrane (CAM) of chicken embryos. This technique enables the investigator to perform well-powered loss-of-function studies of cancer cell extravasation within 24 h, and it can be used to identify and validate drugs with potential antimetastatic effects that specifically target cancer cell extravasation. A key advantage of this technique over similar assays is that intravascular cancer cells within the capillary bed of the CAM are clearly distinct from extravasated cells, which makes cancer cell extravasation easy to detect. An intermediate level of experience in injections of the chorioallantoic membrane of avian embryos and cell culture techniques is required to carry out the protocol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of Transwell invasion assay with the chorioallantoic membrane (CAM) to quantify cancer cell extravasation and imaging intravascular and extravascular cancer cells in the CAM.
Figure 2: Preparation of ex ovo chicken embryos and microinjector assembly for i.v. injection of cancer cells or labeling agents.
Figure 3: I.v. injections of cells or lectin and setting up the extravasation efficiency assay.
Figure 4: Distinguishing intravascular and extravascular cancer cells in the CAM.
Figure 5: Representative schematic of how an extravasation efficiency assay is performed.

Similar content being viewed by others

References

  1. Chambers, A.F., Groom, A.C. & MacDonald, I.C. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2, 563–572 (2002).

    Article  CAS  Google Scholar 

  2. Giampieri, S. et al. Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat. Cell Biol. 11, 1287–1296 (2009).

    Article  CAS  Google Scholar 

  3. Wyckoff, J.B., Jones, J.G., Condeelis, J.S. & Segall, J.E. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res. 60, 2504–2511 (2000).

    CAS  PubMed  Google Scholar 

  4. Zijlstra, A., Lewis, J., Degryse, B., Stuhlmann, H. & Quigley, J.P. The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell 13, 221–234 (2008).

    Article  CAS  Google Scholar 

  5. He, W., Wang, H., Hartmann, L.C., Cheng, J.-X. & Low, P.S. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc. Natl. Acad. Sci. USA 104, 11760–11765 (2007).

    Article  CAS  Google Scholar 

  6. Menen, R.S. et al. A rapid imageable in vivo metastasis assay for circulating tumor cells. Anticancer Res. 31, 3125–3128 (2011).

    PubMed  Google Scholar 

  7. Patsialou, A. et al. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors. Intravital 2, e25294 (2013).

    Article  Google Scholar 

  8. Stoletov, K. et al. Visualizing extravasation dynamics of metastatic tumor cells. J. Cell Sci. 123, 2332–2341 (2010).

    Article  CAS  Google Scholar 

  9. Leong, H.S. et al. Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep. 8, 1558–1570 (2014).

    Article  CAS  Google Scholar 

  10. Barkan, D., Green, J.E. & Chambers, A.F. Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur. J. Cancer 46, 1181–1188 (2010).

    Article  CAS  Google Scholar 

  11. Barkan, D. et al. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 68, 6241–6250 (2008).

    Article  CAS  Google Scholar 

  12. Rondeau, G. et al. Effects of different tissue microenvironments on gene expression in breast cancer cells. PLoS One 9, e101160 (2014).

    Article  Google Scholar 

  13. Bartkowiak, K., Riethdorf, S. & Pantel, K. The interrelating dynamics of hypoxic tumor microenvironments and cancer cell phenotypes in cancer metastasis. Cancer Microenviron. 5, 59–72 (2012).

    Article  CAS  Google Scholar 

  14. Cameron, M.D. et al. Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res. 60, 2541–2546 (2000).

    CAS  PubMed  Google Scholar 

  15. Paku, S., Döme, B., Tóth, R. & Timár, J. Organ-specificity of the extravasation process: an ultrastructural study. Clin. Exp. Metastasis 18, 481–492 (2000).

    Article  CAS  Google Scholar 

  16. Luzzi, K.J. et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol. 153, 865–873 (1998).

    Article  CAS  Google Scholar 

  17. Schlüter, K. et al. Organ-specific metastatic tumor cell adhesion and extravasation of colon carcinoma cells with different metastatic potential. Am. J. Pathol. 169, 1064–1073 (2006).

    Article  Google Scholar 

  18. Arpaia, E. et al. The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk. Oncogene 31, 884–896 (2012).

    Article  CAS  Google Scholar 

  19. MacMillan, C.D. et al. Stage of breast cancer progression influences cellular response to activation of the WNT/planar cell polarity pathway. Sci. Rep. 4, 6315 (2014).

    Article  CAS  Google Scholar 

  20. Cvetkovic, D. et al. KISS1R induces invasiveness of estrogen receptor-negative human mammary epithelial and breast cancer cells. Endocrinology 154, 1999–2014 (2013).

    Article  CAS  Google Scholar 

  21. Veiseh, M. et al. Cellular heterogeneity profiling by hyaluronan probes reveals an invasive but slow-growing breast tumor subset. Proc. Natl. Acad. Sci. USA 111, E1731–E1739 (2014).

    Article  CAS  Google Scholar 

  22. Rytelewski, M. et al. BRCA2 inhibition enhances cisplatin-mediated alterations in tumor cell proliferation, metabolism, and metastasis. Mol. Oncol. 8, 1429–1440 (2014).

    Article  CAS  Google Scholar 

  23. Weiss, L., Mayhew, E., Rapp, D.G. & Holmes, J.C. Metastatic inefficiency in mice bearing B16 melanomas. Br. J. Cancer 45, 44–53 (1982).

    Article  CAS  Google Scholar 

  24. Morris, V.L. et al. Mammary carcinoma cell lines of high and low metastatic potential differ not in extravasation but in subsequent migration and growth. Clin. Exp. Metastasis 12, 357–367 (1994).

    Article  CAS  Google Scholar 

  25. Hill, R.P., Chambers, A.F., Ling, V. & Harris, J.F. Dynamic heterogeneity: rapid generation of metastatic variants in mouse B16 melanoma cells. Science 224, 998–1001 (1984).

    Article  CAS  Google Scholar 

  26. Ebos, J.M.L. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15, 232–239 (2009).

    Article  CAS  Google Scholar 

  27. Pàez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    Article  Google Scholar 

  28. Eckert, M.A. et al. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell 19, 372–386 (2011).

    Article  CAS  Google Scholar 

  29. Artym, V.V., Zhang, Y., Seillier-Moiseiwitsch, F., Yamada, K.M. & Mueller, S.C. Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res. 66, 3034–3043 (2006).

    Article  CAS  Google Scholar 

  30. Albini, A. & Benelli, R. The chemoinvasion assay: a method to assess tumor and endothelial cell invasion and its modulation. Nat. Protoc. 2, 504–511 (2007).

    Article  CAS  Google Scholar 

  31. Albini, A. & Noonan, D.M. The 'chemoinvasion' assay, 25 years and still going strong: the use of reconstituted basement membranes to study cell invasion and angiogenesis. Curr. Opin. Cell Biol. 22, 677–689 (2010).

    Article  CAS  Google Scholar 

  32. Reymond, N., Riou, P. & Ridley, A.J. Rho GTPases and cancer cell transendothelial migration. Methods Mol. Biol. 827, 123–142 (2012).

    Article  CAS  Google Scholar 

  33. Sequeira, L., Dubyk, C.W., Riesenberger, T.A., Cooper, C.R. & van Golen, K.L. Rho GTPases in PC-3 prostate cancer cell morphology, invasion and tumor cell diapedesis. Clin. Exp. Metastasis 25, 569–579 (2008).

    Article  CAS  Google Scholar 

  34. Wendel, C. et al. CXCR4/CXCL12 participate in extravasation of metastasizing breast cancer cells within the liver in a rat model. PLoS One 7, e30046 (2012).

    Article  CAS  Google Scholar 

  35. Gassmann, P. et al. CXCR4 regulates the early extravasation of metastatic tumor cells in vivo. Neoplasia 11, 651–661 (2009).

    Article  CAS  Google Scholar 

  36. Cao, Y. et al. Neuropilin-2 promotes extravasation and metastasis by interacting with endothelial α5 integrin. Cancer Res. 73, 4579–4590 (2013).

    Article  CAS  Google Scholar 

  37. Barthel, S.R. et al. Definition of molecular determinants of prostate cancer cell bone extravasation. Cancer Res. 73, 942–952 (2013).

    Article  CAS  Google Scholar 

  38. Kargozaran, H. et al. A role for endothelial-derived matrix metalloproteinase-2 in breast cancer cell transmigration across the endothelial-basement membrane barrier. Clin. Exp. Metastasis 24, 495–502 (2007).

    Article  CAS  Google Scholar 

  39. Voura, E.B. et al. Proteolysis during tumor cell extravasation in vitro: metalloproteinase involvement across tumor cell types. PLoS One 8, e78413 (2013).

    Article  CAS  Google Scholar 

  40. Tokui, N. et al. Extravasation during bladder cancer metastasis requires cortactin-mediated invadopodia formation. Mol. Med. Rep. 9, 1142–1146 (2014).

    Article  CAS  Google Scholar 

  41. Sutoh Yoneyama, M. et al. Vimentin intermediate filament and plectin provide a scaffold for invadopodia, facilitating cancer cell invasion and extravasation for metastasis. Eur. J. Cell Biol. 93, 157–169 (2014).

    Article  CAS  Google Scholar 

  42. Freeman, S.A. et al. Preventing the activation or cycling of the Rap1 GTPase alters adhesion and cytoskeletal dynamics and blocks metastatic melanoma cell extravasation into the lungs. Cancer Res. 70, 4590–4601 (2010).

    Article  CAS  Google Scholar 

  43. Leong, H.S. et al. Intravital imaging of embryonic and tumor neovasculature using viral nanoparticles. Nat. Protoc. 5, 1406–1417 (2010).

    Article  CAS  Google Scholar 

  44. Nowak-Sliwinska, P. et al. Angiostatic kinase inhibitors to sustain photodynamic angio-occlusion. J. Cell. Mol. Med. 16, 1553–1562 (2012).

    Article  CAS  Google Scholar 

  45. Jeon, J.S., Zervantonakis, I.K., Chung, S., Kamm, R.D. & Charest, J.L. In vitro model of tumor cell extravasation. PLoS One 8, e56910 (2013).

    Article  CAS  Google Scholar 

  46. Chen, M.B., Whisler, J.A., Jeon, J.S. & Kamm, R.D. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr. Biol. (Camb). 5, 1262–1271 (2013).

    Article  CAS  Google Scholar 

  47. Kramer, R.H. & Nicolson, G.L. Interactions of tumor cells with vascular endothelial cell monolayers: a model for metastatic invasion. Proc. Natl. Acad. Sci. USA 76, 5704–5708 (1979).

    Article  CAS  Google Scholar 

  48. Liu, L. et al. A microfluidic device for continuous cancer cell culture and passage with hydrodynamic forces. Lab Chip 10, 1807–1813 (2010).

    Article  CAS  Google Scholar 

  49. Goulet, B. et al. Nuclear localization of maspin is essential for its inhibition of tumor growth and metastasis. Lab. Invest. 91, 1181–1187 (2011).

    Article  CAS  Google Scholar 

  50. Leong, H.S. et al. Imaging the impact of chemically inducible proteins on cellular dynamics in vivo. PLoS One 7, e30177 (2012).

    Article  CAS  Google Scholar 

  51. Leong, H.S., Chambers, A.F. & Lewis, J.D. Assessing cancer cell migration and metastatic growth in vivo in the chick embryo using fluorescence intravital imaging. Methods Mol. Biol. 872, 1–14 (2012).

    Article  CAS  Google Scholar 

  52. Koop, S. et al. Independence of metastatic ability and extravasation: metastatic ras-transformed and control fibroblasts extravasate equally well. Proc. Natl. Acad. Sci. USA 93, 11080–11084 (1996).

    Article  CAS  Google Scholar 

  53. Jilani, S.M. et al. Selective binding of lectins to embryonic chicken vasculature. J. Histochem. Cytochem. 51, 597–604 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a Translational Breast Cancer Research Unit Fellowship and a Canadian Institutes for Health Research Post-doctoral Fellowship Award to K.C.W., a Tier I Canada Research Chair in Oncology to A.F.C. and a Prostate Cancer Canada/Movember Rising Stars Grant to H.S.L. (grant 2013-56). This work was also supported by a Prostate Cancer Canada New Investigator Pilot Grant to H.S.L. (2012-888).

Author information

Authors and Affiliations

Authors

Contributions

Y.K., K.C.W., C.T.G., E.J. and H.S.L. developed the animal models and performed example extravasation experiments. Y.K., K.C.W., A.F.C. and H.S.L. wrote the protocol.

Corresponding author

Correspondence to Hon S Leong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data 1

Underlying data behind Figure 5 showing how Extravasation Efficiency Assay calculations are performed. (XLSX 11 kb)

Three-Dimensional Rendering of Image Set Revealing Intravascular Cancer Cells in Relationship to Blood Lumen and CAM Capillary Bed.

Red signal represents Dextran-Alexa555, purple signal represents Lectin-DyLight649, blue signal represents nuclei stained by Hoechst 33456, and the green signal represents two PC-3M-LN4-zsGreen cells present in the intravascular space of the CAM (AVI 20520 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Williams, K., Gavin, C. et al. Quantification of cancer cell extravasation in vivo. Nat Protoc 11, 937–948 (2016). https://doi.org/10.1038/nprot.2016.050

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.050

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer