Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions

Abstract

Isothermal titration calorimetry (ITC) is a powerful and widely used method to measure the energetics of macromolecular interactions by recording a thermogram of differential heating power during a titration. However, traditional ITC analysis is limited by stochastic thermogram noise and by the limited information content of a single titration experiment. Here we present a protocol for bias-free thermogram integration based on automated shape analysis of the injection peaks, followed by combination of isotherms from different calorimetric titration experiments into a global analysis, statistical analysis of binding parameters and graphical presentation of the results. This is performed using the integrated public-domain software packages NITPIC, SEDPHAT and GUSSI. The recently developed low-noise thermogram integration approach and global analysis allow for more precise parameter estimates and more reliable quantification of multisite and multicomponent cooperative and competitive interactions. Titration experiments typically take 1–2.5 h each, and global analysis usually takes 10–20 min.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Workflow of global ITC analysis using NITPIC, SEDPHAT/ITCsy and GUSSI.
Figure 2: The Experimental Parameter window in SEDPHAT.
Figure 3: Removing an outlying data point in SEDPHAT.
Figure 4: An experiment before and after fitting.
Figure 5: A GUSSI plot of a ten-titration global analysis of randomly methylated β-cyclodextrin (mβCD) binding to the nonionic detergent n-octyl-β-D-maltopyranoside (OM), acquired at different temperatures to determine ΔCp°.
Figure 6: Example of global ITC analysis of a three-protein interaction analyzed in SEDPHAT and plotted in GUSSI.
Figure 7: Global multimethod analysis (GMMA) in SEDPHAT of the two-site interaction of α-chymotrypsin (CT) binding to soybean trypsin inhibitor (SBTI), complementing ITC data with surface plasmon resonance (SPR) surface competition isotherm data, sedimentation velocity isotherms and fluorescence polarization data (not shown).

Similar content being viewed by others

References

  1. Robinson, C.V., Sali, A. & Baumeister, W. The molecular sociology of the cell. Nature 450, 973–982 (2007).

    Article  CAS  Google Scholar 

  2. Cebecauer, M., Spitaler, M., Sergé, A. & Magee, A.I. Signalling complexes and clusters: functional advantages and methodological hurdles. J. Cell Sci. 123, 309–320 (2010).

    Article  CAS  Google Scholar 

  3. Ladbury, J.E. & Arold, S.T. Noise in cellular signaling pathways: causes and effects. Trends Biochem. Sci. 37, 173–178 (2012).

    Article  CAS  Google Scholar 

  4. Ladbury, J.E., Klebe, G. & Freire, E. Adding calorimetric data to decision making in lead discovery: a hot tip. Nat. Rev. Drug Discov. 9, 23–27 (2010).

    Article  CAS  Google Scholar 

  5. Chaires, J.B. Calorimetry and thermodynamics in drug design. Annu. Rev. Biophys. 37, 135–151 (2008).

    Article  CAS  Google Scholar 

  6. Freire, E., Mayorga, O.L. & Straume, M. Isothermal titration calorimetry. Anal. Chem. 62, 950A–959A (1990).

    Article  CAS  Google Scholar 

  7. Wiseman, T., Williston, S., Brandts, J.F. & Lin, L.N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179, 131–137 (1989).

    Article  CAS  Google Scholar 

  8. Cooper, A. Microcalorimetry of protein-protein interactions. Methods Mol. Biol. 88, 11–22 (1998).

    CAS  PubMed  Google Scholar 

  9. Willerich, I. & Gröhn, F. Molecular structure encodes nanoscale assemblies: understanding driving forces in electrostatic self-assembly. J. Am. Chem. Soc. 133, 20341–20356 (2011).

    Article  CAS  Google Scholar 

  10. Heerklotz, H., Tsamaloukas, A.D. & Keller, S. Monitoring detergent-mediated solubilization and reconstitution of lipid membranes by isothermal titration calorimetry. Nat. Protoc. 4, 686–697 (2009).

    Article  CAS  Google Scholar 

  11. Tsamaloukas, A.D., Keller, S. & Heerklotz, H. Uptake and release protocol for assessing membrane binding and permeation by way of isothermal titration calorimetry. Nat. Protoc. 2, 695–704 (2007).

    Article  CAS  Google Scholar 

  12. Bains, G. & Freire, E. Calorimetric determination of cooperative interactions in high affinity binding processes. Anal. Biochem. 192, 203–206 (1991).

    Article  CAS  Google Scholar 

  13. Brown, A. Analysis of cooperativity by isothermal titration calorimetry. Int. J. Mol. Sci. 10, 3457–3477 (2009).

    Article  CAS  Google Scholar 

  14. Freire, E., Schön, A. & Velázquez-Campoy, A. Isothermal titration calorimetry: general formalism using binding polynomials. Methods Enzymol. 455, 127–155 (2009).

    Article  CAS  Google Scholar 

  15. Houtman, J.C.D. et al. Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: application to adaptor protein complexes in cell signaling. Protein Sci. 16, 30–42 (2007).

    Article  CAS  Google Scholar 

  16. Baker, B.M. & Murphy, K.P. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophys. J. 71, 2049–2055 (1996).

    Article  CAS  Google Scholar 

  17. Coussens, N.P., Schuck, P. & Zhao, H. Strategies for assessing proton linkage to bimolecular interactions by global analysis of isothermal titration calorimetry data. J. Chem. Thermodyn. 52, 95–107 (2012).

    Article  CAS  Google Scholar 

  18. Keller, S. et al. High-precision isothermal titration calorimetry with automated peak shape analysis. Anal. Chem. 84, 5066–5073 (2012).

    Article  CAS  Google Scholar 

  19. Pierce, M.M., Raman, C.S. & Nall, B.T. Isothermal titration calorimetry of protein-protein interactions. Methods 19, 213–221 (1999).

    Article  CAS  Google Scholar 

  20. Velázquez-Campoy, A. & Freire, E. Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nat. Protoc. 1, 186–191 (2006).

    Article  Google Scholar 

  21. Roselin, L.S., Lin, M.-S., Lin, P.-H., Chang, Y. & Chen, W.-Y. Recent trends and some applications of isothermal titration calorimetry in biotechnology. Biotechnol. J. 5, 85–98 (2010).

    Article  CAS  Google Scholar 

  22. Velázquez-Campoy, A., Ohtaka, H., Nezami, A., Muzammil, S. & Freire, E. Isothermal titration calorimetry. Curr. Protoc. Cell Biol. 17.8, 17.8.1–17.8.24 (2004).

    Google Scholar 

  23. Torres, F.E., Recht, M.I., Coyle, J.E., Bruce, R.H. & Williams, G. Higher throughput calorimetry: opportunities, approaches and challenges. Curr. Opin. Struct. Biol. 20, 598–605 (2010).

    Article  CAS  Google Scholar 

  24. Scheuermann, T.H. & Brautigam, C.A. High-precision, automated integration of multiple isothermal titration calorimetric thermograms: new features of NITPIC. Methods 76, 87–98 (2015).

    Article  CAS  Google Scholar 

  25. Herman, P. & Lee, J.C. Functional energetic landscape in the allosteric regulation of muscle pyruvate kinase. 1. Calorimetric study. Biochemistry 48, 9448–9455 (2009).

    Article  CAS  Google Scholar 

  26. Krishnamoorthy, J. & Mohanty, S. Open-ITC: an alternate computational approach to analyze the isothermal titration calorimetry data of complex binding mechanisms. J. Mol. Recognit. 24, 1056–1066 (2011).

    Article  Google Scholar 

  27. Henzl, M.T. Characterization of parvalbumin and polcalcin divalent ion binding by isothermal titration calorimetry. Methods Enzymol. 455, 259–297 (2009).

    Article  CAS  Google Scholar 

  28. Freiburger, L.A., Auclair, K. & Mittermaier, A.K. Elucidating protein binding mechanisms by variable-c ITC. Chembiochem 10, 2871–2873 (2009).

    Article  CAS  Google Scholar 

  29. Schönbeck, C., Holm, R. & Westh, P. Higher order inclusion complexes and secondary interactions studied by global analysis of calorimetric titrations. Anal. Chem. 84, 2305–2312 (2012).

    Article  Google Scholar 

  30. Zhao, H., Piszczek, G. & Schuck, P. SEDPHAT—A platform for global ITC analysis and global multi-method analysis of molecular interactions. Methods 76, 137–148 (2015).

    Article  CAS  Google Scholar 

  31. Armstrong, K.M. & Baker, B.M. A comprehensive calorimetric investigation of an entropically driven T cell receptor-peptide/major histocompatibility complex interaction. Biophys. J. 93, 597–609 (2007).

    Article  CAS  Google Scholar 

  32. Freiburger, L.A. et al. Competing allosteric mechanisms modulate substrate binding in a dimeric enzyme. Nat. Struct. Mol. Biol. 18, 288–294 (2011).

    Article  CAS  Google Scholar 

  33. Herman, P. & Lee, J.C. Functional energetic landscape in the allosteric regulation of muscle pyruvate kinase. 2. Fluorescence study. Biochemistry 48, 9456–9465 (2009).

    Article  CAS  Google Scholar 

  34. Zhao, H. & Schuck, P. Global multi-method analysis of affinities and cooperativity in complex systems of macromolecular interactions. Anal. Chem. 84, 9513–9519 (2012).

    Article  CAS  Google Scholar 

  35. Zhao, H. & Schuck, P. Combining biophysical methods for the analysis of protein complex stoichiometry and affinity in SEDPHAT. Acta Crystallogr. D Biol. Crystallogr. 71, 3–14 (2015).

    Article  CAS  Google Scholar 

  36. Freiburger, L., Auclair, K. & Mittermaier, A. Global ITC fitting methods in studies of protein allostery. Methods 76, 149–161 (2015).

    Article  CAS  Google Scholar 

  37. Houtman, J.C.D. et al. Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nat. Struct. Mol. Biol. 13, 798–805 (2006).

    Article  CAS  Google Scholar 

  38. Wynn, R.M., Li, J., Brautigam, C.A., Chuang, J.L. & Chuang, D.T. Structural and biochemical characterization of human mitochondrial branched-chain α-ketoacid dehydrogenase phosphatase. J. Biol. Chem. 287, 9178–9192 (2012).

    Article  CAS  Google Scholar 

  39. Duff, M.R., Grubbs, J., Serpersu, E. & Howell, E.E. Weak interactions between folate and osmolytes in solution. Biochemistry 51, 2309–2318 (2012).

    Article  CAS  Google Scholar 

  40. Huang, L., Serganov, A. & Patel, D.J. Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch. Mol. Cell 40, 774–786 (2010).

    Article  CAS  Google Scholar 

  41. Gustchina, E. et al. Complexes of neutralizing and non-neutralizing affinity matured Fabs with a mimetic of the internal trimeric coiled-coil of HIV-1 gp41. PLoS One 8, e78187 (2013).

    Article  CAS  Google Scholar 

  42. Dellarole, M., Sánchez, I.E. & de Prat Gay, G. Thermodynamics of cooperative DNA recognition at a replication origin and transcription regulatory site. Biochemistry 49, 10277–10286 (2010).

    Article  CAS  Google Scholar 

  43. Krainer, G., Broecker, J., Vargas, C., Fanghänel, J. & Keller, S. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry. Anal. Chem. 84, 10715–10722 (2012).

    Article  CAS  Google Scholar 

  44. Moncrieffe, M.C., Grossmann, J.G. & Gay, N.J. Assembly of oligomeric death domain complexes during Toll receptor signaling. J. Biol. Chem. 283, 33447–33454 (2008).

    Article  CAS  Google Scholar 

  45. Muscroft-Taylor, A.C., Soares da Costa, T.P. & Gerrard, J.A. New insights into the mechanism of dihydrodipicolinate synthase using isothermal titration calorimetry. Biochimie 92, 254–262 (2010).

    Article  CAS  Google Scholar 

  46. Pellizzaro, M.L. et al. Conformer-independent ureidoimidazole motifs—tools to probe conformational and tautomeric effects on the molecular recognition of triply hydrogen-bonded heterodimers. Chem. Eur. J. 17, 14508–14517 (2011).

    Article  CAS  Google Scholar 

  47. Krainer, G. & Keller, S. Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry. Methods 76, 116–123 (2015).

    Article  CAS  Google Scholar 

  48. Brautigam, C.A. Calculations and publication-quality illustrations for analytical ultracentrifugation data. Methods Enzymol. 562, 109–133 (2015).

    Article  CAS  Google Scholar 

  49. Baranauskienė, L. & Matulis, D. Intrinsic thermodynamics of ethoxzolamide inhibitor binding to human carbonic anhydrase XIII. BMC Biophys. 5, 12 (2012).

    Article  Google Scholar 

  50. Matulis, D. & Todd, M. in Biocalorimetry 2: Applications of Calorimetry in the Biological Sciences (eds. Ladbury, J.E. & Doyle, M.E.), 107–132 (John Wiley & Sons, 2004).

  51. Broecker, J., Vargas, C. & Keller, S. Revisiting the optimal c value for isothermal titration calorimetry. Anal. Biochem. 418, 307–309 (2011).

    Article  CAS  Google Scholar 

  52. Gans, P., Sabatini, A. & Vacca, A. Simultaneous calculation of equilibrium constants and standard formation enthalpies from calorimetric data for systems with multiple equilibria in solution. J. Solution Chem. 37, 467–476 (2008).

    Article  CAS  Google Scholar 

  53. Brautigam, C.A. Fitting two- and three-site binding models to isothermal titration calorimetric data. Methods 76, 124–136 (2015).

    Article  CAS  Google Scholar 

  54. Vega, S., Abian, O. & Velázquez-Campoy, A. A unified framework based on the binding polynomial for characterizing biological systems by isothermal titration calorimetry. Methods 76, 99–115 (2015).

    Article  CAS  Google Scholar 

  55. Herrera, I. & Winnik, M. Differential binding models for isothermal titration calorimetry: moving beyond the Wiseman isotherm. J. Phys. Chem. B 117, 8659–8672 (2013).

    Article  CAS  Google Scholar 

  56. Minetti, C., Privalov, P.L. & Remeta, D.P. in Proteins in Solution and at Interfaces: Methods and Applications in Biotechnology and Materials Science (eds. Ruso, J.M. & Pineiro, A.), 139–179 (Wiley, 2013).

  57. Goldberg, R., Kishore, N. & Lennen, R.M. Thermodynamic quantities for the ionization reactions of buffers. J. Phys. Chem. Ref. Data 31, 231–370 (1999).

    Article  Google Scholar 

  58. Bevington, P.R. & Robinson, D.K. Data Reduction and Error Analysis for the Physical Sciences (Mc-Graw-Hill, 1992).

  59. Textor, M., Vargas, C. & Keller, S. Calorimetric quantification of linked equilibria in cyclodextrin/lipid/detergent mixtures for membrane-protein reconstitution. Methods 76, 183–193 (2015).

    Article  CAS  Google Scholar 

  60. Textor, M. & Keller, S. Calorimetric quantification of cyclodextrin-mediated detergent extraction for membrane-protein reconstitution. Methods Enzymol. 567, 129–156 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through International Research Training Group 1830, the Stiftung Rheinland–Pfalz für Innovation and the Intramural Research Program of the National Institute of Biomedical Imaging and Bioengineering, US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

C.V. and S.K. collected data. C.A.B., H.Z., C.V., S.K. and P.S. performed data analysis. C.A.B., H.Z., C.V., S.K. and P.S. prepared the manuscript.

Corresponding authors

Correspondence to Sandro Keller or Peter Schuck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Screenshot of the SEDPHAT window after importing the data from NITPIC.

Shown are the isotherms from the different binding experiments, each in a separate graphics with subpanels for the raw data (top, circles and error bars) and the residuals (bottom). Initially, the residuals are meaningless due to the lack of a fitting model. In each experiment graph, a set of pushbuttons in the upper right corner provides access to individual experimental parameters (blue numbered button) and functions for data management (small buttons labeled i and x to inactivate or delete the titration). To get a quick overview, the identity of each titration along with local experimental parameters can be printed as text over the respective panels by pressing control-O.

Supplementary Figure 2 Screenshot of the SEDPHAT window after the fit has converged.

In each experiment panel, the best-fit titration model is now drawn as a solid line. It should be noted that the residuals are now on a reasonable scale, and for most experiments lack significant systematicity. The overlay of textual output reporting global and local fit parameters can be toggled on and off with the keys ESC and control-O. The best-fit parameters can be obtained also in the model parameter box (control-P), or be summarized in a displayed ASCII text-file (control-T).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 460 kb)

Supplementary Data

Example Data Sets from the duplicate titration experiments of CAII with TFMSA in five different buffers. (ZIP 168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brautigam, C., Zhao, H., Vargas, C. et al. Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions. Nat Protoc 11, 882–894 (2016). https://doi.org/10.1038/nprot.2016.044

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.044

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics