Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome-wide quantification of 5′-phosphorylated mRNA degradation intermediates for analysis of ribosome dynamics

Abstract

Co-translational mRNA degradation is a widespread process in which 5′–3′ exonucleolytic degradation follows the last translating ribosome, thus producing an in vivo ribosomal footprint that delimits the 5′ position of the mRNA molecule within the ribosome. To study this degradation process and ribosome dynamics, we developed 5PSeq, which is a method that profiles the genome-wide abundance of mRNA degradation intermediates by virtue of their 5′-phosphorylated (5′P) ends. The approach involves targeted ligation of an oligonucleotide to the 5′P end of mRNA degradation intermediates, followed by depletion of rRNA molecules, reverse transcription of 5′P mRNAs and Illumina high-throughput sequencing. 5PSeq can identify translational pauses at rare codons that are often masked when using alternative methods. This approach can be applied to previously extracted RNA samples, and it is straightforward and does not require polyribosome purification or in vitro RNA footprinting. The protocol we describe here can be applied to Saccharomyces cerevisiae and potentially to other eukaryotic organisms. Three days are required to generate 5PSeq libraries.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Detailed 5PSeq experimental workflow.
Figure 2: 5PSeq quality controls and anticipated results.
Figure 3: Schematic of alternative 5′ RNA treatments.
Figure 4: Comparison of alternative decapping enzymes.

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Roy, B. & Jacobson, A. The intimate relationships of mRNA decay and translation. Trends Genet. 29, 691–699 (2013).

    CAS  Article  Google Scholar 

  2. Parker, R. RNA degradation in Saccharomyces cerevisae. Genetics 191, 671–702 (2012).

    CAS  Article  Google Scholar 

  3. Hu, W., Sweet, T.J., Chamnongpol, S., Baker, K.E. & Coller, J. Co-translational mRNA decay in Saccharomyces cerevisiae. Nature 461, 225–229 (2009).

    CAS  Article  Google Scholar 

  4. Pelechano, V., Wei, W. & Steinmetz, L.M. Widespread co-translational RNA decay reveals ribosome dynamics. Cell 161, 1400–1412 (2015).

    CAS  Article  Google Scholar 

  5. Pelechano, V., Wei, W., Jakob, P. & Steinmetz, L.M. Genome-wide identification of transcript start and end sites by transcript isoform sequencing. Nat. Protoc. 9, 1740–1759 (2014).

    CAS  Article  Google Scholar 

  6. Pelechano, V., Wei, W. & Steinmetz, L.M. Extensive transcriptional heterogeneity revealed by isoform profiling. Nature 497, 127–131 (2013).

    CAS  Article  Google Scholar 

  7. Wilkening, S. et al. An efficient method for genome-wide polyadenylation site mapping and RNA quantification. Nucleic Acids Res. 41, e65 (2013).

    CAS  Article  Google Scholar 

  8. Addo-Quaye, C., Eshoo, T.W., Bartel, D.P. & Axtell, M.J. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr. Biol. 18, 758–762 (2008).

    CAS  Article  Google Scholar 

  9. German, M.A. et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat. Biotechnol. 26, 941–946 (2008).

    CAS  Article  Google Scholar 

  10. Gregory, B.D. et al. A link between RNA metabolism and silencing affecting Arabidopsis development. Dev. Cell 14, 854–866 (2008).

    CAS  Article  Google Scholar 

  11. Harigaya, Y. & Parker, R. Global analysis of mRNA decay intermediates in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 109, 11764–11769 (2012).

    CAS  Article  Google Scholar 

  12. Lykke-Andersen, S. et al. Human nonsense-mediated RNA decay initiates widely by endonucleolysis and targets snoRNA host genes. Genes Dev. 28, 2498–2517 (2014).

    Article  Google Scholar 

  13. Willmann, M.R., Berkowitz, N.D. & Gregory, B.D. Improved genome-wide mapping of uncapped and cleaved transcripts in eukaryotes—GMUCT 2.0. Methods 67, 64–73 (2014).

    CAS  Article  Google Scholar 

  14. Ingolia, N.T., Brar, G.A., Rouskin, S., McGeachy, A.M. & Weissman, J.S. The ribosome profiling strategy for monitoring translation in vivoby deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7, 1534–1550 (2012).

    CAS  Article  Google Scholar 

  15. Wallace, E.W. & Drummond, D.A. Dying mRNA tells a story of its life. Cell 161, 1246–1248 (2015).

    CAS  Article  Google Scholar 

  16. Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9, 72–74 (2012).

    CAS  Article  Google Scholar 

  17. Konig, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  Google Scholar 

  18. Pelechano, V., Wilkening, S., Jarvelin, A.I., Tekkedil, M.M. & Steinmetz, L.M. Genome-wide polyadenylation site mapping. Methods Enzymol. 513, 271–296 (2012).

    CAS  Article  Google Scholar 

  19. Sun, M. et al. Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation. Genome Res. 22, 1350–1359 (2012).

    CAS  Article  Google Scholar 

  20. Ingolia, N.T., Ghaemmaghami, S., Newman, J.R. & Weissman, J.S. Genome-wide analysis in vivoof translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    CAS  Article  Google Scholar 

  21. Brar, G.A. et al. High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science 335, 552–557 (2012).

    CAS  Article  Google Scholar 

  22. Ingolia, N.T., Lareau, L.F. & Weissman, J.S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).

    CAS  Article  Google Scholar 

  23. Li, G.W., Oh, E. & Weissman, J.S. The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484, 538–541 (2012).

    CAS  Article  Google Scholar 

  24. Bazzini, A.A. et al. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J. 33, 981–993 (2014).

    CAS  Article  Google Scholar 

  25. Dunn, J.G., Foo, C.K., Belletier, N.G., Gavis, E.R. & Weissman, J.S. Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. Elife 2, e01179 (2013).

    Article  Google Scholar 

  26. Stadler, M., Artiles, K., Pak, J. & Fire, A. Contributions of mRNA abundance, ribosome loading, and post- or peri-translational effects to temporal repression of C. elegans heterochronic miRNA targets. Genome Res. 22, 2418–2426 (2012).

    CAS  Article  Google Scholar 

  27. Gerashchenko, M.V. & Gladyshev, V.N. Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic Acids Res. 42, e134 (2014).

    Article  Google Scholar 

  28. Guydosh, N.R. & Green, R. Dom34 rescues ribosomes in 3′ untranslated regions. Cell 156, 950–962 (2014).

    CAS  Article  Google Scholar 

  29. Lareau, L.F., Hite, D.H., Hogan, G.J. & Brown, P.O. Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. Elife 3, e01257 (2014).

    Article  Google Scholar 

  30. German, M.A., Luo, S., Schroth, G., Meyers, B.C. & Green, P.J. Construction of parallel analysis of RNA ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome. Nat. Protoc. 4, 356–362 (2009).

    CAS  Article  Google Scholar 

  31. Maruyama, K. & Sugano, S. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171–174 (1994).

    CAS  Article  Google Scholar 

  32. Scotto-Lavino, E., Du, G. & Frohman, M.A. Amplification of 5′-end cDNA with 'new RACE′. Nat. Protoc. 1, 3056–3061 (2006).

    CAS  Article  Google Scholar 

  33. Shenton, D. et al. Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. J. Biol. Chem. 281, 29011–29021 (2006).

    CAS  Article  Google Scholar 

  34. Gerashchenko, M.V., Lobanov, A.V. & Gladyshev, V.N. Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress. Proc. Natl. Acad. Sci. USA 109, 17394–17399 (2012).

    CAS  Article  Google Scholar 

  35. Morgan, M. et al. ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25, 2607–2608 (2009).

    CAS  Article  Google Scholar 

  36. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  Google Scholar 

  37. Morgan, M. & Pages, H. Rsamtools: binary alignment (BAM), variant call (BCF), or tabix file import. R package version 1.12.3 http://bioconductor.org/packages/release/bioc/html/Rsamtools.html (2013).

  38. Thorvaldsdottir, H., Robinson, J.T. & Mesirov, J.P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Jones for help in editing the manuscript. We thank the members of the Steinmetz laboratory for helpful discussions and critical comments. We thank M. Livingstone for access to alternative decapping enzymes. This study was technically supported by the European Molecular Biology Laboratory (EMBL) Genomics Core Facility. This study was financially supported by the US National Institutes of Health (NIH; grants R01 GM068717 and P01 HG000205), Deutsche Forschungsgemeinschaft (1422/3-1) and a European Research Council Advanced Investigator Grant (no. AdG-294542) to L.M.S.

Author information

Authors and Affiliations

Authors

Contributions

V.P., W.W. and L.M.S. conceived the project. V.P. developed the 5PSeq method. W.W. and V.P. performed data analysis. L.M.S. supervised the study. All authors wrote the manuscript.

Corresponding author

Correspondence to Lars M Steinmetz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pelechano, V., Wei, W. & Steinmetz, L. Genome-wide quantification of 5′-phosphorylated mRNA degradation intermediates for analysis of ribosome dynamics. Nat Protoc 11, 359–376 (2016). https://doi.org/10.1038/nprot.2016.026

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.026

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing