Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Isolation and cultivation of naive-like human pluripotent stem cells based on HERVH expression

An Author Correction to this article was published on 29 October 2018

This article has been updated

Abstract

The ability to derive and stably maintain ground-state human pluripotent stem cells (hPSCs) that resemble the cells seen in vivo in the inner cell mass has the potential to be an invaluable tool for researchers developing stem cell–based therapies. To date, derivation of human naive-like pluripotent stem cell lines has been limited to a small number of lineages, and their long-term culturing remains problematic. We describe a protocol for genetic and phenotypic tagging, selecting and maintaining naive-like hPSCs. We tag hPSCs by GFP, expressed by the long terminal repeat (LTR7) of HERVH endogenous retrovirus. This simple and efficient protocol has been reproduced with multiple hPSC lines, including embryonic and induced pluripotent stem cells, and it takes 6 weeks. By using the reporter, homogeneous hPSC cultures can be derived, characterized and maintained for the long term by repeated re-sorting and re-plating steps. The HERVH-expressing cells have a similar, but nonidentical, expression pattern to other naive-like cells, suggesting that alternative pluripotent states might exist.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the procedure for isolation and characterization of LTR7/HERVH-marked, naive-like hPSCs.
Figure 2: Morphological characterization of genetically tagged hPSCs by fluorescence microscopy.
Figure 3: Characterization of naive-like (HERVH/GFPhigh) and HERVH/GFPlow hPSCs.
Figure 4: Comparison of global expression profiles of various human naive-like lineages with the epiblast cells of the ICM.
Figure 5: X chromosome re-activation assay.
Figure 6: Transcription of retroelements in human preimplantation embryos.

Similar content being viewed by others

Change history

  • 29 October 2018

    In the published version of this paper, the authors omitted a funding source. L.D.H. acknowledges support from the European Research Council (Advanced Grant ERC-2014-ADG 669207). The original article has not been corrected.

References

  1. Stadtfeld, M. & Hochedlinger, K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 24, 2239–2263 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Silva, J. et al. Nanog is the gateway to the pluripotent ground state. Cell 138, 722–737 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boroviak, T., Loos, R., Bertone, P., Smith, A. & Nichols, J. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat. Cell Biol. 16, 516–528 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brons, I.G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Tesar, P.J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Bao, S. et al. Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature 461, 1292–1295 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Evans, M.J. & Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  PubMed  Google Scholar 

  8. Martin, G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ying, Q.L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Hanna, J. et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc. Natl. Acad. Sci. USA 107, 9222–9227 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Theunissen, T.W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo, H. et al. The DNA methylation landscape of human early embryos. Nature 511, 606–610 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Yan, L. et al. Single-cell RNA-seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1131–1139 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Smith, Z.D. et al. DNA methylation dynamics of the human preimplantation embryo. Nature 511, 611–615 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, Y., Blair, K. & Smith, A. Robust self-renewal of rat embryonic stem cells requires fine-tuning of glycogen synthase kinase-3 inhibition. Stem Cell Rep. 1, 209–217 (2013).

    Article  CAS  Google Scholar 

  17. Meek, S. et al. Tuning of β-catenin activity is required to stabilize self-renewal of rat embryonic stem cells. Stem Cells 31, 2104–2115 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Hoffman, L.M. & Carpenter, M.K. Characterization and culture of human embryonic stem cells. Nat. Biotechnol. 23, 699–708 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, J. et al. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516, 405–409 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Kunarso, G. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 42, 631–634 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Belshaw, R. et al. Long-term reinfection of the human genome by endogenous retroviruses. Proc. Natl. Acad. Sci. USA 101, 4894–4899 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goke, J. et al. Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells. Cell Stem Cell 16, 135–141 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Sundaram, V. et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 24, 1963–1976 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu, X. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 21, 423–425 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Mates, L. et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat. Genet. 41, 753–761 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Gafni, O. et al. Derivation of novel human ground state naive pluripotent stem cells. Nature 504, 282–286 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Ware, C.B. et al. Derivation of naive human embryonic stem cells. Proc. Natl. Acad. Sci. USA 111, 4484–4489 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chan, Y.S. et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 13, 663–675 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Martello, G., Bertone, P. & Smith, A. Identification of the missing pluripotency mediator downstream of leukaemia inhibitory factor. EMBO J. 32, 2561–2574 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nichols, J. & Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 487–492 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Okamoto, I. et al. Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472, 370–374 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Fang, R. et al. Generation of naive induced pluripotent stem cells from rhesus monkey fibroblasts. Cell Stem Cell 15, 488–496 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, Y. et al. Generation of cynomolgus monkey chimeric fetuses using embryonic stem cells. Cell Stem Cell 17, 116–124 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Irie, N. et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell 160, 253–268 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang, K., Maruyama, T. & Fan, G. The naive state of human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses. Cell Stem Cell 15, 410–415 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schlesinger, S. & Goff, S.P. Retroviral transcriptional regulation and embryonic stem cells: war and peace. Mol. Cell. Biol. 35, 770–777 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kelley, D. & Rinn, J. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol. 13, R107 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Loewer, S. et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet. 42, 1113–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ng, S.Y., Johnson, R. & Stanton, L.W. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J. 31, 522–533 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Dunn, S.J., Martello, G., Yordanov, B., Emmott, S. & Smith, A.G. Defining an essential transcription factor program for naive pluripotency. Science 344, 1156–1160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Okamoto, I., Otte, A.P., Allis, C.D., Reinberg, D. & Heard, E. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Mak, W. et al. Reactivation of the paternal X chromosome in early mouse embryos. Science 303, 666–669 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Koyanagi-Aoi, M. et al. Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proc. Natl. Acad. Sci. USA 110, 20569–20574 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ohnuki, M. et al. Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential. Proc. Natl. Acad. Sci. USA 111, 12426–12431 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grow, E.J. et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522, 221–225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vigdal, T.J., Kaufman, C.D., Izsvak, Z., Voytas, D.F. & Ivics, Z. Common physical properties of DNA affecting target site selection of sleeping beauty and other Tc1/mariner transposable elements. J. Mol. Biol. 323, 441–452 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Yant, S.R. et al. High-resolution genome-wide mapping of transposon integration in mammals. Mol. Cell. Biol. 25, 2085–2094 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Voigt, K. et al. Retargeting Sleeping Beauty transposon insertions by engineered zinc finger DNA-binding domains. Mol. Ther. 20, 1852–1862 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grabundzija, I. et al. Comparative analysis of transposable element vector systems in human cells. Mol. Ther. 18, 1200–1209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Papapetrou, E.P. et al. Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells. Nat. Biotechnol. 29, 73–78 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Grabundzija, I. et al. Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells. Nucleic Acids Res. 41, 1829–1847 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Largaespada, D.A. & Collier, L.S. Transposon-mediated mutagenesis in somatic cells: identification of transposon-genomic DNA junctions. Methods Mol. Biol. 435, 95–108 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ivics, Z., Izsvak, Z., Medrano, G., Chapman, K.M. & Hamra, F.K. Sleeping Beauty transposon mutagenesis in rat spermatogonial stem cells. Nat. Protoc. 6, 1521–1535 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Nagy, A. et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development 110, 815–821 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Kolodziejczyk, A.A. et al. Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell 17, 471–485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tonge, P.D. et al. Divergent reprogramming routes lead to alternative stem-cell states. Nature 516, 192–197 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Vassena, R. et al. Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. Development 138, 3699–3709 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Marti, M. et al. Characterization of pluripotent stem cells. Nat. Protoc. 8, 223–253 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Padilla-Nash, H.M., Barenboim-Stapleton, L., Difilippantonio, M.J. & Ried, T. Spectral karyotyping analysis of human and mouse chromosomes. Nat. Protoc. 1, 3129–3142 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gu, H. et al. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat. Protoc. 6, 468–481 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Tomoda, K. et al. Derivation conditions impact X-inactivation status in female human induced pluripotent stem cells. Cell Stem Cell 11, 91–99 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pasque, V. et al. X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency. Cell 159, 1681–1697 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Z. Izsvák is funded by European Research Council (ERC) grant ERC-2011-AdG 294742. L.D.H. is funded by Medical Research grant MR/L007215/1. We thank E.È. Nagy for her assistance in specifying experimental details.

Author information

Authors and Affiliations

Authors

Contributions

Z. Izsvák, L.D.H. and J.W. wrote the manuscript. J.W. designed and performed experiments, and provided technical details to the Protocol. M.S. performed bioinformatic, cross-culture comparative studies. C. Sun assisted in cell culture and gene expression analysis. Z. Ivics provided critical advice. D.B. and A.P. provided materials.

Corresponding authors

Correspondence to Laurence D Hurst or Zsuzsanna Izsvák.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Singh, M., Sun, C. et al. Isolation and cultivation of naive-like human pluripotent stem cells based on HERVH expression. Nat Protoc 11, 327–346 (2016). https://doi.org/10.1038/nprot.2016.016

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.016

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing