Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Isolation of ubiquitinated substrates by tandem affinity purification of E3 ligase–polyubiquitin-binding domain fusions (ligase traps)

Abstract

Ubiquitination is an essential protein modification that influences eukaryotic processes ranging from substrate degradation to nonproteolytic pathway alterations, including DNA repair and endocytosis. Previous attempts to analyze substrates via physical association with their respective ubiquitin ligases have had some success. However, because of the transient nature of enzyme-substrate interactions and rapid protein degradation, detection of substrates remains a challenge. Ligase trapping is an affinity purification approach in which ubiquitin ligases are fused to a polyubiquitin-binding domain, which allows the isolation of ubiquitinated substrates. Immunoprecipitation is first used to enrich for proteins that are bound to the ligase trap. Subsequently, affinity purification is used under denaturing conditions to capture proteins conjugated with hexahistidine-tagged ubiquitin. By using this protocol, ubiquitinated substrates that are specific for a given ligase can be isolated for mass spectrometry or western blot analysis. After cells have been collected, the described protocol can be completed in 2–3 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the ligase trapping procedure.
Figure 2: Quality-control post-purification results for yeast purification.
Figure 3: Quality-control post-purification results for mammalian purification.

Similar content being viewed by others

References

  1. Breitschopf, K., Bengal, E., Ziv, T., Admon, A. & Ciechanover, A. A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO J. 17, 5964–5973 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schulman, B.A. Twists and turns in ubiquitin-like protein conjugation cascades. Protein Sci. 20, 1941–1954 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Finley, D., Ulrich, H.D., Sommer, T. & Kaiser, P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 192, 319–360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Benanti, J.A., Cheung, S.K., Brady, M.C. & Toczyski, D.P. A proteomic screen reveals SCFGrr1 targets that regulate the glycolytic-gluconeogenic switch. Nat. Cell Biol. 9, 1184–1191 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Yen, H.C. & Elledge, S.J. Identification of SCF ubiquitin ligase substrates by global protein stability profiling. Science 322, 923–929 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Yen, H.C., Xu, Q., Chou, D.M., Zhao, Z. & Elledge, S.J. Global protein stability profiling in mammalian cells. Science 322, 918–923 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Emanuele, M.J. et al. Global identification of modular cullin-RING ligase substrates. Cell 147, 459–474 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barral, Y., Jentsch, S. & Mann, C. G1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast. Genes Dev. 9, 399–409 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Koepp, D.M., Kile, A.C., Swaminathan, S. & Rodriguez-Rivera, V. The F-box protein Dia2 regulates DNA replication. Mol. Biol. Cell 17, 1540–1548 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Landry, B.D., Doyle, J.P., Toczyski, D.P. & Benanti, J.A. F-box protein specificity for G1 cyclins is dictated by subcellular localization. PLoS Genet. 8, e1002851 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pant, V. & Lozano, G. Limiting the power of p53 through the ubiquitin proteasome pathway. Genes Dev. 28, 1739–1751 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Galligan, J.T. et al. Proteomic analysis and identification of cellular interactors of the giant ubiquitin ligase HERC2. J. Proteome Res. 14, 953–966 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Martinez-Noel, G. et al. Identification and proteomic analysis of distinct UBE3A/E6AP protein complexes. Mol. Cell Biol. 32, 3095–3106 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davis, M.A. et al. The SCF-Fbw7 ubiquitin ligase degrades MED13 and MED13L and regulates CDK8 module association with mediator. Genes Dev. 27, 151–156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pierce, N.W., Kleiger, G., Shan, S.O. & Deshaies, R.J. Detection of sequential polyubiquitylation on a millisecond timescale. Nature 462, 615–619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gardner, R.G., Shearer, A.G. & Hampton, R.Y. In vivo action of the HRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation. Mol. Cell Biol. 21, 4276–4291 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tagwerker, C. et al. A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivo cross-linking. Mol. Cell Proteomics 5, 737–748 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Elsasser, S. & Finley, D. Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell Biol. 7, 742–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Grabbe, C. & Dikic, I. Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins. Chem. Rev. 109, 1481–1494 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Sims, J.J., Haririnia, A., Dickinson, B.C., Fushman, D. & Cohen, R.E. Avid interactions underlie the Lys63-linked polyubiquitin binding specificities observed for UBA domains. Nat. Struct. Mol. Biol. 16, 883–889 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mark, K.G., Simonetta, M., Maiolica, A., Seller, C.A. & Toczyski, D.P. Ubiquitin ligase trapping identifies an SCFSaf1 pathway targeting unprocessed vacuolar/lysosomal proteins. Mol. Cell 53, 148–161 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bennett, E.J., Rush, J., Gygi, S.P. & Harper, J.W. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 143, 951–965 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuchay, S. et al. FBXL2- and PTPL1-mediated degradation of p110-free p85β regulatory subunit controls the PI(3)K signalling cascade. Nat. Cell Biol. 15, 472–480 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Wimuttisuk, W. et al. Novel Cul3 binding proteins function to remodel E3 ligase complexes. BMC Cell Biol. 15, 28 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921–926 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Gururaja, T., Li, W., Noble, W.S., Payan, D.G. & Anderson, D.C. Multiple functional categories of proteins identified in an in vitro cellular ubiquitin affinity extract using shotgun peptide sequencing. J. Proteome Res. 2, 394–404 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Hitchcock, A.L., Auld, K., Gygi, S.P. & Silver, P.A. A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery. Proc. Natl. Acad. Sci. USA 100, 12735–12740 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kirkpatrick, D.S., Weldon, S.F., Tsaprailis, G., Liebler, D.C. & Gandolfi, A.J. Proteomic identification of ubiquitinated proteins from human cells expressing His-tagged ubiquitin. Proteomics 5, 2104–2111 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Jeon, H.B. et al. A proteomics approach to identify the ubiquitinated proteins in mouse heart. Biochem. Biophys. Res. Commun. 357, 731–736 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Meierhofer, D., Wang, X., Huang, L. & Kaiser, P. Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J. Proteome Res. 7, 4566–4576 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Franco, M., Seyfried, N.T., Brand, A.H., Peng, J. & Mayor, U. A novel strategy to isolate ubiquitin conjugates reveals wide role for ubiquitination during neural development. Mol. Cell Proteomics http://dx.doi.org/10.1074/mcp.M110.002188 (2011).

  33. Danielsen, J.M. et al. Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol. Cell Proteomics 10 http://dx.doi.org/10.1074/mcp.M110.003590 (2011).

  34. Wilson, M.D., Saponaro, M., Leidl, M.A. & Svejstrup, J.Q. MultiDsk: a ubiquitin-specific affinity resin. PLoS One 7, e46398 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Layfield, R. et al. Purification of poly-ubiquitinated proteins by S5a-affinity chromatography. Proteomics 1, 773–777 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Anindya, R., Aygun, O. & Svejstrup, J.Q. Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1. Mol. Cell 28, 386–397 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Hjerpe, R. et al. Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep. 10, 1250–1258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shi, Y. et al. A data set of human endogenous protein ubiquitination sites. Mol. Cell Proteomics 10 http://dx.doi.org/10.1074/mcp.M110.002089 (2011).

  39. Lopitz-Otsoa, F. et al. Integrative analysis of the ubiquitin proteome isolated using Tandem Ubiquitin Binding Entities (TUBEs). J. Proteomics 75, 2998–3014 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Tan, M.K., Lim, H.J., Bennett, E.J., Shi, Y. & Harper, J.W. Parallel SCF adaptor capture proteomics reveals a role for SCFFBXL17 in NRF2 activation via BACH1 repressor turnover. Mol. Cell 52, 9–24 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Behrends, C., Sowa, M.E., Gygi, S.P. & Harper, J.W. Network organization of the human autophagy system. Nature 466, 68–76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sowa, M.E., Bennett, E.J., Gygi, S.P. & Harper, J.W. Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389–403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Loveless, T.B. et al. DNA damage regulates translation through β-TRCP targeting of CReP. PLoS Genet. 11, e1005292 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kim, T.Y. et al. Substrate trapping proteomics reveals targets of the β-TrCP2/FBXW11 ubiquitin ligase. Mol. Cell Biol. 35, 167–181 (2015).

    Article  PubMed  CAS  Google Scholar 

  45. Peng, J. & Gygi, S.P. Proteomics: the move to mixtures. J. Mass Spectrom. 36, 1083–1091 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Xu, G., Paige, J.S. & Jaffrey, S.R. Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat. Biotechnol. 28, 868–873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325–340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Theurillat, J.P. et al. Prostate cancer. Ubiquitylome analysis identifies dysregulation of effector substrates in SPOP-mutant prostate cancer. Science 346, 85–89 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kronke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    Article  PubMed  CAS  Google Scholar 

  50. Thompson, J.W. et al. Quantitative Lys-ɛ-Gly-Gly (diGly) proteomics coupled with inducible RNAi reveals ubiquitin-mediated proteolysis of DNA damage-inducible transcript 4 (DDIT4) by the E3 ligase HUWE1. J. Biol. Chem. 289, 28942–28955 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ordureau, A., Munch, C. & Harper, J.W. Quantifying ubiquitin signaling. Mol. Cell 58, 660–676 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sultan, M. et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321, 956–960 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Kulathu, Y., Akutsu, M., Bremm, A., Hofmann, K. & Komander, D. Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain. Nat. Struct. Mol. Biol. 16, 1328–1330 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136, 1098–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. van Wijk, S.J., Muller, S. & Dikic, I. Shared and unique properties of ubiquitin and SUMO interaction networks in DNA repair. Genes Dev. 25, 1763–1769 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McEwan, D.G. & Dikic, I. The Three Musketeers of Autophagy: phosphorylation, ubiquitylation and acetylation. Trends Cell Biol. 21, 195–201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grants R01 GM059691 and GM070539 to D.P.T., and by a predoctoral fellowship from the American Heart Association to T.B.L.

Author information

Authors and Affiliations

Authors

Contributions

K.G.M. developed the protocol for yeast application, designed and performed experiments, analyzed data and wrote the manuscript; T.B.L. developed the protocol for mammalian cell application, designed and performed experiments, analyzed data and wrote the manuscript; D.P.T. conceived and oversaw the study, designed experiments, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to David P Toczyski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mark, K., Loveless, T. & Toczyski, D. Isolation of ubiquitinated substrates by tandem affinity purification of E3 ligase–polyubiquitin-binding domain fusions (ligase traps). Nat Protoc 11, 291–301 (2016). https://doi.org/10.1038/nprot.2016.008

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.008

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research