Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems

Abstract

Programmable nucleases enable engineering of the genome by utilizing endogenous DNA double-strand break (DSB) repair pathways. Although homologous recombination (HR)-mediated gene knock-in is well established, it cannot necessarily be applied in every cell type and organism because of variable HR frequencies. We recently reported an alternative method of gene knock-in, named the PITCh (Precise Integration into Target Chromosome) system, assisted by microhomology-mediated end-joining (MMEJ). MMEJ harnesses independent machinery from HR, and it requires an extremely short homologous sequence (5–25 bp) for DSB repair, resulting in precise gene knock-in with a more easily constructed donor vector. Here we describe a streamlined protocol for PITCh knock-in, including the design and construction of the PITCh vectors, and their delivery to either human cell lines by transfection or to frog embryos by microinjection. The construction of the PITCh vectors requires only a few days, and the entire process takes 1.5 months to establish knocked-in cells or 1 week from injection to early genotyping in frog embryos.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A simplified schematic of DSB repair mechanisms induced by TALENs and CRISPR-Cas9.
Figure 2: General outlines of HR-, NHEJ- and MMEJ-mediated gene knock-in.
Figure 3: A schematic of TAL-PITCh-mediated whole plasmid integration.
Figure 4: The original and modified CRIS-PITCh systems (v1 and v2) for cassette knock-in.
Figure 5: General workflow of CRIS-PITCh (v2)-mediated gene knock-in in cultured cells.
Figure 6: In vivo visualization of endogenous keratin protein fused to EGFP in Xenopus laevis16.
Figure 7: A schematic illustration of vector construction for CRIS-PITCh (v2)–mediated gene knock-in in cultured cells.
Figure 8: Options for constructing the TAL-PITCh donor vector.
Figure 9: CRIS-PITCh (v2)–mediated cassette knock-in in HEK293T cells.

Similar content being viewed by others

References

  1. Sakuma, T. & Woltjen, K. Nuclease-mediated genome editing: at the front-line of functional genomics technology. Dev. Growth Differ. 56, 2–13 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Bibikova, M., Golic, M., Golic, K.G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, H.J., Kim, E. & Kim, J.S. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. 20, 81–89 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee, H.J., Kweon, J., Kim, E., Kim, S. & Kim, J.S. Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res. 22, 539–548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taleei, R. & Nikjoo, H. Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle. Mutat. Res. 756, 206–212 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Hockemeyer, D. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat. Biotechnol. 27, 851–857 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hockemeyer, D. et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat. Biotechnol. 29, 731–734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sommer, D. et al. Efficient genome engineering by targeted homologous recombination in mouse embryos using transcription activator-like effector nucleases. Nat. Commun. 5, 3045 (2014).

    Article  PubMed  Google Scholar 

  9. Mashimo, T. et al. Efficient gene targeting by TAL effector nucleases coinjected with exonucleases in zygotes. Sci. Rep. 3, 1253 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gratz, S.J. et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194, 1029–1035 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yasue, A. et al. Highly efficient targeted mutagenesis in one-cell mouse embryos mediated by the TALEN and CRISPR/Cas systems. Sci. Rep. 4, 5705 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peng, D., Kurup, S.P., Yao, P.Y., Minning, T.A. & Tarleton, R.L. CRISPR-Cas9–mediated single-gene and gene family disruption in Trypanosoma cruzi. MBio 6, e02097–14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bae, S., Kweon, J., Kim, H.S. & Kim, J.S. Microhomology-based choice of Cas9 nuclease target sites. Nat. Methods 11, 705–706 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Li, H.L. et al. Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports 4, 143–154 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Nakade, S. et al. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat. Commun. 5, 5560 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Cristea, S. et al. In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration. Biotechnol. Bioeng. 110, 871–880 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Maresca, M., Lin, V.G., Guo, N. & Yang, Y. Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res. 23, 539–546 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miller, J.C. et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143–148 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Sakuma, T. et al. Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells 18, 315–326 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Hisano, Y. et al. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci. Rep. 5, 8841 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xiong, X. et al. 53BP1 promotes microhomology-mediated end-joining in G1-phase cells. Nucleic Acids Res. 43, 1659–1670 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McVey, M. RPA puts the brakes on MMEJ. Nat. Struct. Mol. Biol. 21, 348–349 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Kim, H. & Kim, J.S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321–334 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Li, J., Zhang, B., Bu, J. & Du, J. Intron-based genomic editing: a highly efficient method for generating knock-in zebrafish. Oncotarget 6, 17891–17894 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. Chen, F. et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat. Methods 8, 753–755 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bedell, V.M. et al. In vivo genome editing using a high-efficiency TALEN system. Nature 491, 114–118 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meyer, M., Ortiz, O., Hrabé de Angelis, M., Wurst, W. & Kühn, R. Modeling disease mutations by gene targeting in one-cell mouse embryos. Proc. Natl. Acad. Sci. USA 109, 9354–9359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Orlando, S.J. et al. Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res. 38, e152 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Auer, T.O., Duroure, K., De Cian, A., Concordet, J.P. & Del Bene, F. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. 24, 142–153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sakuma, T. et al. Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci. Rep. 3, 3379 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sakuma, T. & Yamamoto, T. Engineering customized TALENs using the Platinum Gate TALEN Kit. Methods Mol. Biol. 1338, 61–70 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Ran, F.A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sakuma, T., Nishikawa, A., Kume, S., Chayama, K. & Yamamoto, T. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci. Rep. 4, 5400 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ochiai, H. et al. Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases. Genes Cells 15, 875–885 (2010).

    CAS  PubMed  Google Scholar 

  36. Mashiko, D. et al. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci. Rep. 3, 3355 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Certo, M.T. et al. Tracking genome engineering outcome at individual DNA breakpoints. Nat. Methods 8, 671–676 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guschin, D.Y. et al. A rapid and general assay for monitoring endogenous gene modification. Methods Mol. Biol. 649, 247–256 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Vouillot, L. et al. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda) 5, 407–415 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  40. Suzuki, K.T. et al. High efficiency TALENs enable F0 functional analysis by targeted gene disruption in Xenopus laevis embryos. Biol. Open 2, 448–452 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakagawa, Y. et al. Screening methods to identify TALEN-mediated knockout mice. Exp. Anim. 63, 79–84 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ota, S. et al. Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells 18, 450–458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dahlem, T.J. et al. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 8, e1002861 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pyzocha, N.K., Ran, F.A., Hsu, P.D. & Zhang, F. RNA-guided genome editing of mammalian cells. Methods Mol. Biol. 1114, 269–277 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Byrne, S.M., Mali, P. & Church, G.M. Genome editing in human stem cells. Methods Enzymol. 546, 119–138 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shaner, N.C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu, Z., Verma, N., González, F., Shi, Z.D. & Huangfu, D. A CRISPR/Cas-mediated selection-free knock-in strategy in human embryonic stem cells. Stem Cell Reports 4, 1103–1111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rodgers, K. & McVey, M. Error-prone repair of DNA double-strand breaks. J. Cell Physiol. 231, 15–24 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sakuma, T. et al. Homologous recombination-independent large gene cassette knock-in in CHO cells using TALEN and MMEJ-directed donor plasmids. Int. J. Mol. Sci. 16, 23849–23866 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sive, H., Grainger, R. & Harland, R. Early Development of Xenopus laevis: a Laboratory Manual (Cold Spring Harbor Laboratory Press, 2000).

Download references

Acknowledgements

The authors express their appreciation to A. Kawahara and Y. Hisano (University of Yamanashi, Yamanashi, Japan) for co-developing the modified PITCh system. We also thank H. Ochiai (Hiroshima University, Hiroshima, Japan) for sharing the synthesized mNeonGreen cDNA under the license agreement with Allele Biotechnology and Pharmaceuticals, Inc. This work was supported by the Japan Society for the Promotion of Science (25890014 to T.S., 25124708 to K.-I.T.S. and 26290070 to T.Y.), the Sasakawa Foundation (to S.N.), the Uehara Memorial Foundation (to T.S.) and the Ministry of Health, Labor, and Welfare of Japan (to T.Y.).

Author information

Authors and Affiliations

Authors

Contributions

T.S. organized and wrote the manuscript. S.N. performed the human cell experiments and wrote the manuscript concerning human cell procedures. Y.S. performed the frog experiments. K.-I.T.S. wrote the manuscript concerning frog procedures. T.Y. supervised the work.

Corresponding author

Correspondence to Tetsushi Sakuma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Design and validation of the PITCh-gRNAs.

Three gRNAs were initially designed, and safety and efficacy validated by online off-target searches and single-strand annealing (SSA) assays1, respectively. (a) Target sequence of each artificially-designed PITCh-gRNA. PAM sequence is underlined. (b) In silico validation of each PITCh-gRNA using the CRISPR design tool (http://crispr.mit.edu/). Higher scores indicate lower off-target risks in corresponding organisms. (c) Experimental validation of DSB-inducing activities by human cell-based SSA assay. pSTL-ZFA36 vector1 was used for the positive control zinc-finger nuclease (ZFN). Blue bars indicate negative control samples that reporter vectors harboring unrelated sequence were introduced. Red bars indicate test samples that reporter vectors harboring corresponding target sequence were introduced.

1. Ochiai, H. et al. Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases. Genes Cells 15, 875–885 (2010).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakuma, T., Nakade, S., Sakane, Y. et al. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc 11, 118–133 (2016). https://doi.org/10.1038/nprot.2015.140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.140

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing