Protocol | Published:

An orthotopic mouse model of hepatocellular carcinoma with underlying liver cirrhosis

Nature Protocols volume 10, pages 12641274 (2015) | Download Citation

Abstract

Subcutaneous xenografts have been used for decades to study hepatocellular carcinoma (HCC). These models do not reproduce the specific pathophysiological features of HCCs, which occur in cirrhotic livers that show pronounced necroinflammation, abnormal angiogenesis and extensive fibrosis. As these features are crucial for studying the role of the pathologic host microenvironment in tumor initiation, progression and treatment response, alternative HCC models are desirable. Here we describe a syngeneic orthotopic HCC model in immunocompetent mice with liver cirrhosis induced by carbon tetrachloride (CCl4) that recapitulates key features of human HCC. Induction of substantial hepatic fibrosis requires 12 weeks of CCl4 administration. Intrahepatic implantation of mouse HCC cell lines requires 30 min per mouse. Tumor growth varies by tumor cell line and mouse strain used. Alternatively, tumors can be induced in a genetically engineered mouse model. In this setting, CCl4 is administered for 12 weeks after tail-vein injection of Cre-expressing adenovirus (adeno-Cre) in Stk4−/−Stk3F/− (also known as Mst1−/−Mst2F/−; F indicates a floxed allele) mice, and it results in the development of HCC tumors (hepatocarcinogenesis) concomitantly with liver cirrhosis.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Emerging trends in hepatocellular carcinoma incidence and mortality. Hepatology 61, 191–199 (2015).

  2. 2.

    & Biomarkers for early diagnosis of hepatocellular carcinoma. Lancet Oncol. 13, 750–751 (2012).

  3. 3.

    , , & HCC and angiogenesis: possible targets and future directions. Nat. Rev. Clin. Oncol. 8, 292–301 (2011).

  4. 4.

    , , & Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 144, 512–527 (2013).

  5. 5.

    , , & Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu. Rev. Chem. Biomol. Eng. 2, 281–298 (2011).

  6. 6.

    et al. Predictors of survival in patients with established cirrhosis and hepatocellular carcinoma treated with sorafenib. World J. Gastroenterol. 20, 786–794 (2014).

  7. 7.

    et al. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 α/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. Hepatology 59, 1435–1447 (2014).

  8. 8.

    , , & Current strategy for staging and treatment: the BCLC update and future prospects. Semin. Liver Dis. 30, 61–74 (2010).

  9. 9.

    European Association For The Study Of The Liver. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J. Hepatol. 56, 908–943 (2012).

  10. 10.

    & Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J. Cell. Biochem. 101, 937–949 (2007).

  11. 11.

    et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 61, 1591–1602 (2015).

  12. 12.

    , , , & Experimental models of hepatocellular carcinoma. J. Hepatol. 48, 858–879 (2008).

  13. 13.

    , , , & Xenografts of human hepatocellular carcinoma: a useful model for testing drugs. Clin. Cancer Res. 12, 4306–4314 (2006).

  14. 14.

    et al. Oncogene-specific gene expression signatures at preneoplastic stage in mice define distinct mechanisms of hepatocarcinogenesis. Hepatology 44, 1003–1011 (2006).

  15. 15.

    et al. Astrocyte elevated gene-1 promotes hepatocarcinogenesis: novel insights from a mouse model. Hepatology 56, 1782–1791 (2012).

  16. 16.

    et al. Astrocyte elevated gene-1 and c-Myc cooperate to promote hepatocarcinogenesis in mice. Hepatology 61, 915–929 (2015).

  17. 17.

    et al. Coactivation of AKT and β-catenin in mice rapidly induces formation of lipogenic liver tumors. Cancer Res. 71, 2718–2727 (2011).

  18. 18.

    , , , & Virus-induced hepatocellular carcinomas cause antigen-specific local tolerance. J. Clin. Invest. 123, 1032–1043 (2013).

  19. 19.

    et al. Metabolic activation of intrahepatic CD8+ T cells and NK T cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 26, 549–564 (2014).

  20. 20.

    et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16, 425–438 (2009).

  21. 21.

    et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125, 1253–1267 (2006).

  22. 22.

    et al. AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma. Oncogene 30, 1229–1240 (2011).

  23. 23.

    , , , & Immune checkpoint blockade in hepatocellular carcinoma: current progress and future directions. Hepatology 60, 1776–1782 (2014).

  24. 24.

    et al. Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J. Hepatol. 57, 803–812 (2012).

  25. 25.

    et al. Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver. Gastroenterology 146, 801–811 (2014).

  26. 26.

    et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc. Natl. Acad. Sci. USA 107, 1437–1442 (2010).

  27. 27.

    Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals (National Academies Press, 2011).

  28. 28.

    Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. Hepatology 20, 15–20 (1994).

  29. 29.

    et al. Percutaneous US-guided implantation of Vx-2 carcinoma into rabbit liver: a comparison with open surgical method. J. Surg. Res. 155, 94–99 (2009).

  30. 30.

    , , & Repopulation of adult and neonatal mice with human hepatocytes: a chimeric animal model. Proc. Natl. Acad. Sci. USA 104, 20507–20511 (2007).

  31. 31.

    & Secreted blood reporters: insights and applications. Biotechnol. Adv. 29, 997–1003 (2011).

Download references

Acknowledgements

The authors thank D. Nguyen, A. Pieters and C. Smith for their outstanding support in establishing this protocol. This study was supported by the NIH grant P01-CA080124, and in part by grants R01-CA159258, R21-CA139168, R01-CA126642 and National Cancer Institute/Proton Beam Federal Share Program awards (to D.G.D. and R.K.J.); by the American Cancer Society grant 120733-RSG-11-073-01-TBG (to D.G.D.); by a Max Kade Fellowship by the Austrian Academy of Science and a Erwin-Schroedinger Fellowship by the Austrian Science Funds (to T.R.); by a Howard Hughes Medical Institute Medical Research Fellowship (to C.F.); and by a Postdoctoral Fellowship from Astellas Foundation for Research on Metabolic Disorders (to T.H.).

Author information

Affiliations

  1. Department of Radiation Oncology, Steele Laboratories for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.

    • Thomas Reiberger
    • , Yunching Chen
    • , Rakesh R Ramjiawan
    • , Tai Hato
    • , Christopher Fan
    • , Rekha Samuel
    • , Sylvie Roberge
    • , Peigen Huang
    • , Rakesh K Jain
    •  & Dan G Duda
  2. Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria.

    • Thomas Reiberger
  3. Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.

    • Yunching Chen
  4. Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, Vrije Universiteit (VU) University Medical Center, Amsterdam, the Netherlands.

    • Rakesh R Ramjiawan
  5. Duke University School of Medicine, Durham, North Carolina, USA.

    • Christopher Fan
  6. Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.

    • Gregory Y Lauwers
  7. Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.

    • Andrew X Zhu
    •  & Nabeel Bardeesy

Authors

  1. Search for Thomas Reiberger in:

  2. Search for Yunching Chen in:

  3. Search for Rakesh R Ramjiawan in:

  4. Search for Tai Hato in:

  5. Search for Christopher Fan in:

  6. Search for Rekha Samuel in:

  7. Search for Sylvie Roberge in:

  8. Search for Peigen Huang in:

  9. Search for Gregory Y Lauwers in:

  10. Search for Andrew X Zhu in:

  11. Search for Nabeel Bardeesy in:

  12. Search for Rakesh K Jain in:

  13. Search for Dan G Duda in:

Contributions

T.R., Y.C., A.X.Z., R.K.J. and D.G.D. contributed to the concept and design of the study. T.R., Y.C., R.R.R., T.H., P.H., S.R., C.F., R.S. and G.Y.L. were responsible for acquisition of the data. T.R., Y.C., R.R.R., T.H., R.S., P.H., G.Y.L., A.X.Z., N.B., R.K.J. and D.G.D. contributed to analysis and interpretation of the data. T.R., Y.C., R.R.R., T.H., C.F., R.S., S.R., P.H., G.Y.L., A.X.Z., N.B., R.K.J. and D.G.D. were involved in drafting of the article and revising it for important intellectual content.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Dan G Duda.

Integrated supplementary information

Supplementary information

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nprot.2015.080

Further reading

  • The DNA methylation profile of liver tumors in C3H mice and identification of differentially methylated regions involved in the regulation of tumorigenic genes

    • Junya Matsushita
    • , Kazuyuki Okamura
    • , Kazuhiko Nakabayashi
    • , Takehiro Suzuki
    • , Yu Horibe
    • , Tomoko Kawai
    • , Toshihiro Sakurai
    • , Satoshi Yamashita
    • , Yoshikazu Higami
    • , Gaku Ichihara
    • , Kenichiro Hata
    •  & Keiko Nohara

    BMC Cancer (2018)

  • Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research

    • Zachary J. Brown
    • , Bernd Heinrich
    •  & Tim F. Greten

    Nature Reviews Gastroenterology & Hepatology (2018)

  • Deviations of the immune cell landscape between healthy liver and hepatocellular carcinoma

    • Nataliya Rohr-Udilova
    • , Florian Klinglmüller
    • , Rolf Schulte-Hermann
    • , Judith Stift
    • , Merima Herac
    • , Martina Salzmann
    • , Francesca Finotello
    • , Gerald Timelthaler
    • , Georg Oberhuber
    • , Matthias Pinter
    • , Thomas Reiberger
    • , Erika Jensen-Jarolim
    • , Robert Eferl
    •  & Michael Trauner

    Scientific Reports (2018)

  • Consensus guidelines for the use and interpretation of angiogenesis assays

    • Patrycja Nowak-Sliwinska
    • , Kari Alitalo
    • , Elizabeth Allen
    • , Andrey Anisimov
    • , Alfred C. Aplin
    • , Robert Auerbach
    • , Hellmut G. Augustin
    • , David O. Bates
    • , Judy R. van Beijnum
    • , R. Hugh F. Bender
    • , Gabriele Bergers
    • , Andreas Bikfalvi
    • , Joyce Bischoff
    • , Barbara C. Böck
    • , Peter C. Brooks
    • , Federico Bussolino
    • , Bertan Cakir
    • , Peter Carmeliet
    • , Daniel Castranova
    • , Anca M. Cimpean
    • , Ondine Cleaver
    • , George Coukos
    • , George E. Davis
    • , Michele De Palma
    • , Anna Dimberg
    • , Ruud P. M. Dings
    • , Valentin Djonov
    • , Andrew C. Dudley
    • , Neil P. Dufton
    • , Sarah-Maria Fendt
    • , Napoleone Ferrara
    • , Marcus Fruttiger
    • , Dai Fukumura
    • , Bart Ghesquière
    • , Yan Gong
    • , Robert J. Griffin
    • , Adrian L. Harris
    • , Christopher C. W. Hughes
    • , Nan W. Hultgren
    • , M. Luisa Iruela-Arispe
    • , Melita Irving
    • , Rakesh K. Jain
    • , Raghu Kalluri
    • , Joanna Kalucka
    • , Robert S. Kerbel
    • , Jan Kitajewski
    • , Ingeborg Klaassen
    • , Hynda K. Kleinmann
    • , Pieter Koolwijk
    • , Elisabeth Kuczynski
    • , Brenda R. Kwak
    • , Koen Marien
    • , Juan M. Melero-Martin
    • , Lance L. Munn
    • , Roberto F. Nicosia
    • , Agnes Noel
    • , Jussi Nurro
    • , Anna-Karin Olsson
    • , Tatiana V. Petrova
    • , Kristian Pietras
    • , Roberto Pili
    • , Jeffrey W. Pollard
    • , Mark J. Post
    • , Paul H. A. Quax
    • , Gabriel A. Rabinovich
    • , Marius Raica
    • , Anna M. Randi
    • , Domenico Ribatti
    • , Curzio Ruegg
    • , Reinier O. Schlingemann
    • , Stefan Schulte-Merker
    • , Lois E. H. Smith
    • , Jonathan W. Song
    • , Steven A. Stacker
    • , Jimmy Stalin
    • , Amber N. Stratman
    • , Maureen Van de Velde
    • , Victor W. M. van Hinsbergh
    • , Peter B. Vermeulen
    • , Johannes Waltenberger
    • , Brant M. Weinstein
    • , Hong Xin
    • , Bahar Yetkin-Arik
    • , Seppo Yla-Herttuala
    • , Mervin C. Yoder
    •  & Arjan W. Griffioen

    Angiogenesis (2018)

  • Overcoming sorafenib evasion in hepatocellular carcinoma using CXCR4-targeted nanoparticles to co-deliver MEK-inhibitors

    • Yunching Chen
    • , Ya-Chi Liu
    • , Yun-Chieh Sung
    • , Rakesh R. Ramjiawan
    • , Ts-Ting Lin
    • , Chih-Chun Chang
    • , Kuo-Shyang Jeng
    • , Chiung-Fang Chang
    • , Chun-Hung Liu
    • , Dong-Yu Gao
    • , Fu-Fei Hsu
    • , Annique M. Duyverman
    • , Shuji Kitahara
    • , Peigen Huang
    • , Simona Dima
    • , Irinel Popescu
    • , Keith T. Flaherty
    • , Andrew X. Zhu
    • , Nabeel Bardeesy
    • , Rakesh K. Jain
    • , Cyril H. Benes
    •  & Dan G. Duda

    Scientific Reports (2017)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.