Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantitative assessment of RNA-protein interactions with high-throughput sequencing–RNA affinity profiling

Abstract

Because RNA-protein interactions have a central role in a wide array of biological processes, methods that enable a quantitative assessment of these interactions in a high-throughput manner are in great demand. Recently, we developed the high-throughput sequencing–RNA affinity profiling (HiTS-RAP) assay that couples sequencing on an Illumina GAIIx genome analyzer with the quantitative assessment of protein-RNA interactions. This assay is able to analyze interactions between one or possibly several proteins with millions of different RNAs in a single experiment. We have successfully used HiTS-RAP to analyze interactions of the EGFP and negative elongation factor subunit E (NELF-E) proteins with their corresponding canonical and mutant RNA aptamers. Here we provide a detailed protocol for HiTS-RAP that can be completed in about a month (8 d hands-on time). This includes the preparation and testing of recombinant proteins and DNA templates, clustering DNA templates on a flowcell, HiTS and protein binding with a GAIIx instrument, and finally data analysis. We also highlight aspects of HiTS-RAP that can be further improved and points of comparison between HiTS-RAP and two other recently developed methods, quantitative analysis of RNA on a massively parallel array (RNA-MaP) and RNA Bind-n-Seq (RBNS), for quantitative analysis of RNA-protein interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of HiTS-RAP.
Figure 2: DNA template and RNA transcript of HiTS-RAP.
Figure 3: Workflow of HiTS-RAP data analysis.
Figure 4: Examples of protein-binding curves from HiTS-RAP.

Similar content being viewed by others

References

  1. Amaral, P.P., Dinger, M.E., Mercer, T.R. & Mattick, J.S. The eukaryotic genome as an RNA machine. Science 319, 1787–1789 (2008).

    Article  CAS  Google Scholar 

  2. Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–157 (1982).

    Article  CAS  Google Scholar 

  3. Prody, G.A., Bakos, J.T., Buzayan, J.M., Schneider, I.R. & Bruening, G. Autolytic processing of dimeric plant virus satellite RNA. Science 231, 1577–1580 (1986).

    Article  CAS  Google Scholar 

  4. Staley, J.P. & Woolford, J.L. Jr. Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines. Curr. Opin. Cell Biol. 21, 109–118 (2009).

    Article  CAS  Google Scholar 

  5. Baltz, A.G. et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46, 674–690 (2012).

    Article  CAS  Google Scholar 

  6. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article  CAS  Google Scholar 

  7. Furey, T.S. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat. Rev. Genet. 13, 840–852 (2012).

    Article  CAS  Google Scholar 

  8. Konig, J., Zarnack, K., Luscombe, N.M. & Ule, J. Protein-RNA interactions: new genomic technologies and perspectives. Nat. Rev. Genet. 13, 77–83 (2011).

    Article  Google Scholar 

  9. Ray, D. et al. Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat. Biotechnol. 27, 667–670 (2009).

    Article  CAS  Google Scholar 

  10. Ray, D. et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature 499, 172–177 (2013).

    Article  CAS  Google Scholar 

  11. Berger, M.F. et al. Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat. Biotechnol. 24, 1429–1435 (2006).

    Article  CAS  Google Scholar 

  12. Cho, M. et al. Quantitative selection and parallel characterization of aptamers. Proc. Natl. Acad. Sci. USA 110, 18460–18465 (2013).

    Article  CAS  Google Scholar 

  13. Nutiu, R. et al. Direct measurement of DNA affinity landscapes on a high-throughput sequencing instrument. Nat. Biotechnol. 29, 659–664 (2011).

    Article  CAS  Google Scholar 

  14. Tome, J.M. et al. Comprehensive analysis of RNA-protein interactions by high-throughput sequencing-RNA affinity profiling. Nat. Methods 11, 683–688 (2014).

    Article  CAS  Google Scholar 

  15. Mohanty, B.K., Sahoo, T. & Bastia, D. The relationship between sequence-specific termination of DNA replication and transcription. EMBO J. 15, 2530–2539 (1996).

    Article  CAS  Google Scholar 

  16. Buenrostro, J.D. et al. Quantitative analysis of RNA-protein interactions on a massively parallel array reveals biophysical and evolutionary landscapes. Nat. Biotechnol. 32, 562–568 (2014).

    Article  CAS  Google Scholar 

  17. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  18. Ellinger, T. & Ehricht, R. Single-step purification of T7 RNA polymerase with a 6-histidine tag. Biotechniques 24, 718–720 (1998).

    Article  CAS  Google Scholar 

  19. Guajardo, R. & Sousa, R. Characterization of the effects of Escherichia coli replication terminator protein (Tus) on transcription reveals dynamic nature of the tus block to transcription complex progression. Nucleic Acids Res. 27, 2814–2824 (1999).

    Article  CAS  Google Scholar 

  20. Mohanty, B.K., Sahoo, T. & Bastia, D. Mechanistic studies on the impact of transcription on sequence-specific termination of DNA replication and vice versa. J. Biol. Chem. 273, 3051–3059 (1998).

    Article  CAS  Google Scholar 

  21. Lambert, N. et al. RNA Bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins. Mol. Cell 54, 887–900 (2014).

    Article  CAS  Google Scholar 

  22. Fujita, K. & Silver, J. Surprising lability of biotin-streptavidin bond during transcription of biotinylated DNA bound to paramagnetic streptavidin beads. Biotechniques 14, 608–617 (1993).

    CAS  PubMed  Google Scholar 

  23. Johansson, H.E. et al. A thermodynamic analysis of the sequence-specific binding of RNA by bacteriophage MS2 coat protein. Proc. Natl. Acad. Sci. USA 95, 9244–9249 (1998).

    Article  CAS  Google Scholar 

  24. Gravina, M.T., Lin, J.H. & Levine, S.S. Lane-by-lane sequencing using Illumina's Genome Analyzer II. Biotechniques 54, 265–269 (2013).

    Article  CAS  Google Scholar 

  25. Dean, K.M. & Palmer, A.E. Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat. Chem. Biol. 10, 512–523 (2014).

    Article  CAS  Google Scholar 

  26. Shi, X. et al. Quantitative fluorescence labeling of aldehyde-tagged proteins for single-molecule imaging. Nat. Methods 9, 499–503 (2012).

    Article  CAS  Google Scholar 

  27. McCullum, E.O., Williams, B.A., Zhang, J. & Chaput, J.C. Random mutagenesis by error-prone PCR. Methods Mol. Biol. 634, 103–109 (2010).

    Article  CAS  Google Scholar 

  28. Pluthero, F.G. Rapid purification of high-activity Taq DNA polymerase. Nucleic Acids Res. 21, 4850–4851 (1993).

    Article  CAS  Google Scholar 

  29. Wang, Y. et al. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro. Nucleic Acids Res. 32, 1197–1207 (2004).

    Article  CAS  Google Scholar 

  30. Sambrook, J. & Russell, D.W. Preparation of denaturing polyacrylamide gels. Cold Spring Harb. Protoc. 10.1101/pdb.prot3793 (2006).

  31. Hellman, L.M. & Fried, M.G. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat. Protoc. 2, 1849–1861 (2007).

    Article  CAS  Google Scholar 

  32. Lee, E.H., Kornberg, A., Hidaka, M., Kobayashi, T. & Horiuchi, T. Escherichia coli replication termination protein impedes the action of helicases. Proc. Natl. Acad. Sci. USA 86, 9104–9108 (1989).

    Article  CAS  Google Scholar 

  33. Kornberg, R.D. The molecular basis of eukaryotic transcription. Proc. Natl. Acad. Sci. USA 104, 12955–12961 (2007).

    Article  CAS  Google Scholar 

  34. Steitz, T.A. The structural changes of T7 RNA polymerase from transcription initiation to elongation. Curr. Opin. Struct. Biol. 19, 683–690 (2009).

    Article  CAS  Google Scholar 

  35. Lee, E.H. & Kornberg, A. Features of replication fork blockage by the Escherichia coli terminus-binding protein. J. Biol. Chem. 267, 8778–8784 (1992).

    CAS  PubMed  Google Scholar 

  36. Katsamba, P.S., Park, S. & Laird-Offringa, I.A. Kinetic studies of RNA-protein interactions using surface plasmon resonance. Methods 26, 95–104 (2002).

    Article  CAS  Google Scholar 

  37. Hall, K.B. & Kranz, J.K. Nitrocellulose filter binding for determination of dissociation constants. Methods Mol. Biol. 118, 105–114 (1999).

    CAS  PubMed  Google Scholar 

  38. Rio, D.C. Filter-binding assay for analysis of RNA-protein interactions. Cold Spring Harb. Protoc. 2012, 1078–1081 (2012).

    Article  Google Scholar 

  39. Moore, D.D. Commonly used reagents and equipment. Curr. Protoc. Mol. Biol. A.2.1–A.2.8 (2001).

  40. Sambrook, J. & Russell, D.W. Molecular Cloning: A Laboratory Manual 3rd edn. (Cold Spring Harbor Laboratory Press, 2001).

  41. Sambrook, J. & Russell, D.W. SDS-polyacrylamide gel electrophoresis of proteins. Cold Spring Harb. Protoc. 10.1101/pdb.prot4540 (2006).

  42. Fairbanks, G., Steck, T.L. & Wallach, D.F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10, 2606–2617 (1971).

    Article  CAS  Google Scholar 

  43. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  44. Pagano, J.M. et al. Defining NELF-E RNA binding in HIV-1 and promoter-proximal pause regions. PLoS Genet. 10, e1004090 (2014).

    Article  Google Scholar 

  45. Shui, B. et al. RNA aptamers that functionally interact with green fluorescent protein and its derivatives. Nucleic Acids Res. 40, e39 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.M. Pagano (Cornell University) for providing NELF-E aptamer and protein constructs, and performing NELF-E EMSA experiments; C.B. Burge (Massachusetts Institute of Technology) for the development of the seminal HiTS-FLIP assay and the scripts used for extraction of protein binding data; B. Mohanty (Medical University of South Carolina) for providing vectors containing the tus gene; K. Szeto and D. Shalloway (Cornell University) for advice on data analysis; W. Zipfel and A. Singh (Cornell University) for help in understanding the optics of the GAIIx; A. Rizzi, C.T. Waters and H. Kwak (Cornell University) for bioinformatics advice; the Cornell Sequencing Core Facility for help in running the GAIIx; and H. Craighead (Cornell University) and the members of the Lis laboratory for helpful discussions on experimental design and the manuscript. This work was supported by US National Institutes of Health grants GM090320 and DA030329 to J.T.L.

Author information

Authors and Affiliations

Authors

Contributions

A.O. and J.T.L. conceived of HiTS-RAP. A.O., J.M.T., D.G., G.P.S. and J.T.L. designed the HiTS-RAP protocol. D.G. and G.P.S. supplied sequencing reagents and equipment, as well as technical information. A.O. and J.M.T. performed the experiments. J.M.T. wrote the .xml recipe. J.M.T. and R.C.F. wrote the analysis pipeline. A.O., J.M.T. and J.T.L. wrote the paper.

Corresponding authors

Correspondence to Abdullah Ozer or John T Lis.

Ethics declarations

Competing interests

D.G. and G.P.S. are employees of Illumina. All other authors declare no competing financial interests.

Supplementary information

Supplementary Tutorial and Software

Supplementary Tutorial 1 and Supplementary Software 1 (PDF 1179 kb)

Supplementary Software 2

extract_intensity_cif.pl (TXT 6 kb)

Supplementary Software 3

ExtractIntensitiesFromCIF_max.py (TXT 1 kb)

Supplementary Software 4

ExtractIntensitiesFromCIF_T.py (TXT 1 kb)

Supplementary Software 5

HiTS_RAP_Pipeline_Final.py (TXT 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozer, A., Tome, J., Friedman, R. et al. Quantitative assessment of RNA-protein interactions with high-throughput sequencing–RNA affinity profiling. Nat Protoc 10, 1212–1233 (2015). https://doi.org/10.1038/nprot.2015.074

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.074

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing