Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In vitro and in vivo generation and characterization of Pseudomonas aeruginosa biofilm–dispersed cells via c-di-GMP manipulation

Abstract

Bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) is a global secondary bacterial messenger that controls the formation of drug-resistant multicellular biofilms. Lowering the intracellular c-di-GMP content can disperse biofilms, and it is proposed as a biofilm eradication strategy. However, freshly dispersed biofilm cells exhibit a physiology distinct from biofilm and planktonic cells, and they might have a clinically relevant role in infections. Here we present in vitro and in vivo protocols for the generation and characterization of dispersed cells from Pseudomonas aeruginosa biofilms by reducing the intracellular c-di-GMP content through modulation of phosphodiesterases (PDEs). Unlike conventional protocols that demonstrate biofilm dispersal by biomass quantification, our protocols enable physiological characterization of the dispersed cells. Biomarkers of dispersed cells are identified and quantified, serving as potential targets for treating the dispersed cells. The in vitro protocol can be completed within 4 d, whereas the in vivo protocol requires 7 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic workflow of biofilm dispersal and evaluation of dispersed cells in vitro.
Figure 2: Schematic workflow of biofilm dispersal and evaluation of dispersed cells in vivo.
Figure 3: Quantification of dispersed cells and biofilm after 5 h of dispersal treatment in vitro.
Figure 4: c-di-GMP as a universal biomarker for PAO1/pBAD-yhjH in vitro–dispersed cells with induction by L-arabinose in comparison with planktonic cells.
Figure 5: Biomarkers specific to P. aeruginosa in vitro–dispersed cells post biofilm dispersal in comparison with planktonic cells.
Figure 6: Pyoverdine production of dispersed cells and planktonic cells measured in PAO1/pBAD-yhjH (planktonic or 0.25% arabinose-dispersed) in vitro cultures by means of fluorescence (excitation 400 nm/emission 460 nm) by a Tecan microplate reader (Step 44).
Figure 7: In vivo dispersal of P. aeruginosa biofilms.

Similar content being viewed by others

References

  1. Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R. & Lappin-Scott, H.M. Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995).

    Article  CAS  Google Scholar 

  2. Donlan, R.M. Biofilm formation: a clinically relevant microbiological process. Clin. Infect. Dis. 33, 1387–1392 (2001).

    Article  CAS  Google Scholar 

  3. Hall-Stoodley, L., Costerton, J.W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004).

    Article  CAS  Google Scholar 

  4. Karatan, E. & Watnick, P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol. Mol. Biol. Rev. 73, 310–347 (2009).

    Article  CAS  Google Scholar 

  5. Ramsey, M.M. & Whiteley, M. Pseudomonas aeruginosa attachment and biofilm development in dynamic environments. Mol. Microbiol. 53, 1075–1087 (2004).

    Article  CAS  Google Scholar 

  6. Sauer, K., Camper, A.K., Ehrlich, G.D., Costerton, J.W. & Davies, D.G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184, 1140–1154 (2002).

    Article  CAS  Google Scholar 

  7. Flemming, H.C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    Article  CAS  Google Scholar 

  8. McDougald, D., Rice, S.A., Barraud, N., Steinberg, P.D. & Kjelleberg, S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 10, 39–50 (2012).

    Article  CAS  Google Scholar 

  9. Hoiby, N. & Rosendal, K. Epidemiology of Pseudomonas aeruginosa infection in patients treated at a cystic fibrosis centre. Acta Pathol. Microbiol. Scand. B 88, 125–131 (1980).

    CAS  PubMed  Google Scholar 

  10. Ramsey, B.W. Management of pulmonary disease in patients with cystic fibrosis. N. Engl. J. Med. 335, 179–188 (1996).

    Article  CAS  Google Scholar 

  11. Bodey, G.P., Bolivar, R., Fainstein, V. & Jadeja, L. Infections caused by Pseudomonas aeruginosa. Rev. Infect. Dis. 5, 279–313 (1983).

    Article  CAS  Google Scholar 

  12. Bjarnsholt, T. et al. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr. Pulmonol. 44, 547–558 (2009).

    Article  Google Scholar 

  13. Hall-Stoodley, L. & Stoodley, P. Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol. 13, 7–10 (2005).

    Article  CAS  Google Scholar 

  14. Barraud, N. et al. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J. Bacteriol. 188, 7344–7353 (2006).

    Article  CAS  Google Scholar 

  15. Sauer, K. et al. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J. Bacteriol. 186, 7312–7326 (2004).

    Article  CAS  Google Scholar 

  16. Chua, S.L. et al. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat. Commun. 5, 4462 (2014).

    Article  CAS  Google Scholar 

  17. Ymele-Leki, P. & Ross, J.M. Erosion from Staphylococcus aureus biofilms grown under physiologically relevant fluid shear forces yields bacterial cells with reduced avidity to collagen. Appl. Environ. Microbiol. 73, 1834–1841 (2007).

    Article  CAS  Google Scholar 

  18. Hunt, S.M., Werner, E.M., Huang, B., Hamilton, M.A. & Stewart, P.S. Hypothesis for the role of nutrient starvation in biofilm detachment. Appl. Environ. Microbiol. 70, 7418–7425 (2004).

    Article  CAS  Google Scholar 

  19. Hengge, R. Principles of c-di-GMP signalling in bacteria. Nat. Rev. Microbiol. 7, 263–273 (2009).

    Article  CAS  Google Scholar 

  20. Romling, U., Gomelsky, M. & Galperin, M.Y. C-di-GMP: the dawning of a novel bacterial signalling system. Mol. Microbiol. 57, 629–639 (2005).

    Article  Google Scholar 

  21. Chua, S.L. et al. Bis-(3′-5′)-cyclic dimeric GMP regulates antimicrobial peptide resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 57, 2066–2075 (2013).

    Article  CAS  Google Scholar 

  22. Li, Y. et al. BdlA, DipA and induced dispersion contribute to acute virulence and chronic persistence of Pseudomonas aeruginosa. PLoS Pathog. 10, e1004168 (2014).

    Article  Google Scholar 

  23. Barraud, N. et al. Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms. Microb. Biotechnol. 2, 370–378 (2009).

    Article  CAS  Google Scholar 

  24. Barraud, N. et al. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J. Bacteriol. 191, 7333–7342 (2009).

    Article  CAS  Google Scholar 

  25. Carlson, H.K., Vance, R.E. & Marletta, M.A. H-NOX regulation of c-di-GMP metabolism and biofilm formation in Legionella pneumophila. Mol. Microbiol. 77, 930–942 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Roy, A.B., Petrova, O.E. & Sauer, K. The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion. J. Bacteriol. 194, 2904–2915 (2012).

    Article  CAS  Google Scholar 

  27. Christensen, L.D. et al. Clearance of Pseudomonas aeruginosa foreign-body biofilm infections through reduction of the cyclic Di-GMP level in the bacteria. Infect. Immun. 81, 2705–2713 (2013).

    Article  CAS  Google Scholar 

  28. Morgan, R., Kohn, S., Hwang, S.H., Hassett, D.J. & Sauer, K. BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J. Bacteriol. 188, 7335–7343 (2006).

    Article  CAS  Google Scholar 

  29. Gjermansen, M., Nilsson, M., Yang, L. & Tolker-Nielsen, T. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol. Microbiol. 75, 815–826 (2010).

    Article  CAS  Google Scholar 

  30. Barraud, N., Moscoso, J.A., Ghigo, J.M. & Filloux, A. Methods for studying biofilm dispersal in Pseudomonas aeruginosa. Methods Mol. Biol. 1149, 643–651 (2014).

    Article  Google Scholar 

  31. Nguyen, T., Roddick, F.A. & Fan, L. Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes 2, 804–840 (2012).

    Article  CAS  Google Scholar 

  32. Chmielewski, R.A.N. & Frank, J.F. Biofilm formation and control in food processing facilities. Compr. Rev. Food Sci. Food Saf. 2, 22–32 (2006).

    Article  Google Scholar 

  33. Barnes, R.J. et al. Optimal dosing regimen of nitric oxide donor compounds for the reduction of Pseudomonas aeruginosa biofilm and isolates from wastewater membranes. Biofouling 29, 203–212 (2013).

    Article  CAS  Google Scholar 

  34. Lord, D.M., Baran, A.U., Wood, T.K., Peti, W. & Page, R. BdcA, a protein important for Escherichia colibiofilm dispersal, is a short-chain dehydrogenase/reductase that binds specifically to NADPH. PLoS ONE 9, e105751 (2014).

    Article  Google Scholar 

  35. Marvasi, M., Chen, C., Carrazana, M., Durie, I.A. & Teplitski, M. Systematic analysis of the ability of nitric oxide donors to dislodge biofilms formed by Salmonella enterica and Escherichia coli O157:H7. AMB Express 4, 42 (2014).

    Article  Google Scholar 

  36. Marks, L.R., Davidson, B.A., Knight, P.R. & Hakansson, A.P. Interkingdom signaling induces Streptococcus pneumoniae biofilm dispersion and transition from asymptomatic colonization to disease. mBio 4, e00438-13 (2013).

    Article  Google Scholar 

  37. Nguyen, U.T. & Burrows, L.L. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms. Int. J. Food Microbiol. 187, 26–32 (2014).

    Article  CAS  Google Scholar 

  38. Xiang, X., Deng, W., Liu, M. & Xie, J. Mycobacterium biofilms: factors involved in development, dispersal, and therapeutic strategies against biofilm-relevant pathogens. Crit. Rev. Eukaryot. Gene Expr. 24, 269–279 (2014).

    Article  CAS  Google Scholar 

  39. Nobile, C.J. et al. A histone deacetylase complex mediates biofilm dispersal and drug resistance in Candida albicans. mBio 5, e01201–e01214 (2014).

    Article  Google Scholar 

  40. Gjermansen, M., Ragas, P., Sternberg, C., Molin, S. & Tolker-Nielsen, T. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ. Microbiol. 7, 894–906 (2005).

    Article  CAS  Google Scholar 

  41. Rybtke, M.T. et al. Fluorescence-based reporter for gauging cyclic di-GMP levels in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 78, 5060–5069 (2012).

    Article  CAS  Google Scholar 

  42. Yang, L., Nilsson, M., Gjermansen, M., Givskov, M. & Tolker-Nielsen, T. Pyoverdine and PQS-mediated subpopulation interactions involved in Pseudomonas aeruginosa biofilm formation. Mol. Microbiol. 74, 1380–1392 (2009).

    Article  CAS  Google Scholar 

  43. Leoni, L., Ciervo, A., Orsi, N. & Visca, P. Iron-regulated transcription of the pvdA gene in Pseudomonas aeruginosa: effect of Fur and PvdS on promoter activity. J. Bacteriol. 178, 2299–2313 (1996).

    Article  CAS  Google Scholar 

  44. Frangipani, E. et al. The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa. Environ. Microbiol. 16, 676–688 (2014).

    Article  CAS  Google Scholar 

  45. Poole, K., Neshat, S. & Heinrichs, D. Pyoverdine-mediated iron transport in Pseudomonas aeruginosa: involvement of a high-molecular-mass outer membrane protein. FEMS Microbiol. Lett. 62, 1–5 (1991).

    CAS  PubMed  Google Scholar 

  46. Chen, Y. et al. Multiple diguanylate cyclase-coordinated regulation of pyoverdine synthesis in Pseudomonas aeruginosa. Environ. Microbiol. Rep. 7, 498–507 (2015).

    Article  CAS  Google Scholar 

  47. Kilkenny, C., Browne, W.J., Cuthill, I.C., Emerson, M. & Altman, D.G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).

    Article  Google Scholar 

  48. Bjarnsholt, T. et al. Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS ONE 5, e10115 (2010).

    Article  Google Scholar 

  49. Chen, Y., Chai, Y., Guo, J.H. & Losick, R. Evidence for cyclic Di-GMP-mediated signaling in Bacillus subtilis. J. Bacteriol. 194, 5080–5090 (2012).

    Article  CAS  Google Scholar 

  50. Kumar, M. & Chatterji, D. Cyclic di-GMP: a second messenger required for long-term survival, but not for biofilm formation, in Mycobacterium smegmatis. Microbiology 154, 2942–2955 (2008).

    Article  CAS  Google Scholar 

  51. Christen, M. et al. Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 328, 1295–1297 (2010).

    Article  CAS  Google Scholar 

  52. Paul, K., Nieto, V., Carlquist, W.C., Blair, D.F. & Harshey, R.M. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a 'backstop brake' mechanism. Mol. Cell 38, 128–139 (2010).

    Article  CAS  Google Scholar 

  53. Merkel, T.J., Barros, C. & Stibitz, S. Characterization of the bvgR locus of Bordetella pertussis. J. Bacteriol. 180, 1682–1690 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Holloway, B.W. & Morgan, A.F. Genome organization in Pseudomonas. Annu. Rev. Microbiol. 40, 79–105 (1986).

    Article  CAS  Google Scholar 

  55. Jacobs, M.A. et al. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100, 14339–14344 (2003).

    Article  CAS  Google Scholar 

  56. Newman, J.R. & Fuqua, C. Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227, 197–203 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Research Foundation and Ministry of Education Singapore under its Research Centre of Excellence Programme, by a Start-up grant (M4330002.C70) from Nanyang Technological University, and by Academic Research Fund (AcRF) Tier 2 (MOE2014-T2-2-172) from the Ministry of Education, Singapore (to L.Y.). This work was supported by grants from the Danish Council for Strategic Research (M.G.).

Author information

Authors and Affiliations

Authors

Contributions

S.L.C., M.Y., T.E.N. and M.R. performed the in vitro dispersal experiments. L.D.H. performed the in vivo dispersal experiments. S.L.C., M.G., T.T.-N. and L.Y. wrote the manuscript. M.G., T.T.-N. and L.Y. designed the experiments.

Corresponding author

Correspondence to Liang Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chua, S., Hultqvist, L., Yuan, M. et al. In vitro and in vivo generation and characterization of Pseudomonas aeruginosa biofilm–dispersed cells via c-di-GMP manipulation. Nat Protoc 10, 1165–1180 (2015). https://doi.org/10.1038/nprot.2015.067

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.067

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology