Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method

Abstract

We describe a technique for fabricating microfluidic devices with complex multilayer architectures using a laser printer, a CO2 laser cutter, an office laminator and common overhead transparencies as a printable substrate via a laser print, cut and laminate (PCL) methodology. The printer toner serves three functions: (i) it defines the microfluidic architecture, which is printed on the overhead transparencies; (ii) it acts as the adhesive agent for the bonding of multiple transparency layers; and (iii) it provides, in its unmodified state, printable, hydrophobic 'valves' for fluidic flow control. By using common graphics software, e.g., CorelDRAW or AutoCAD, the protocol produces microfluidic devices with a design-to-device time of 40 min. Devices of any shape can be generated for an array of multistep assays, with colorimetric detection of molecular species ranging from small molecules to proteins. Channels with varying depths can be formed using multiple transparency layers in which a CO2 laser is used to remove the polyester from the channel sections of the internal layers. The simplicity of the protocol, availability of the equipment and substrate and cost-effective nature of the process make microfluidic devices available to those who might benefit most from expedited, microscale chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the PCL protocol.
Figure 2: CorelDRAW design of a complex microfluidic device and the post-ablation architecture.
Figure 3: Schematic of components required for assembly of a multilayer chip.
Figure 4: Designing the toner valve layer.
Figure 5: Alignment processes associated with laser printing and ablation.
Figure 6: Screenshot image of the VersaLaser VLS3.50 software displaying z-axis tabs.
Figure 7: Screenshot image of the VersaLaser VLS3.50 software showing color and 'vect' options.
Figure 8: Multilayer alignment to yield a functional microdevice.
Figure 9: Different microdevice designs fabricated by the laser PCL protocol.
Figure 10: PCL microdevice-facilitated total protein quantification and white blood cell counting directly from whole blood.

Similar content being viewed by others

References

  1. Manz, A., Graber, N. & Widmer, H.M. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens. Actuat. B1 1, 244–248 (1990).

    Article  CAS  Google Scholar 

  2. Duffy, D.C., Gillis, H.L., Lin, J., Sheppard, N.F. & Kellogg, G.J. Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays. Anal. Chem. 71, 4669–4678 (1999).

    Article  CAS  Google Scholar 

  3. Grumann, M. et al. Sensitivity enhancement for colorimetric glucose assays on whole blood by on-chip beam-guidance. Biomed. Microdevices 8, 209–214 (2006).

    Article  CAS  Google Scholar 

  4. Vella, S.J. et al. Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal. Chem. 84, 2883–2891 (2012).

    Article  CAS  Google Scholar 

  5. Park, J., Sunkara, V., Kim, T.-H., Hwang, H. & Cho, Y.-K. Lab-on-a-disc for fully integrated multiplex immunoassays. Anal. Chem. 84, 2133–2140 (2012).

    Article  CAS  Google Scholar 

  6. Lee, B.S. et al. Fully integrated lab-on-a-disc for simultaneous analysis of biochemistry and immunoassay from whole blood. Lab Chip 11, 1170–1178 (2011).

    Google Scholar 

  7. Lai, S. et al. Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal. Chem. 76, 1832–1837 (2004).

    Article  CAS  Google Scholar 

  8. Lagally, E.T., Emrich, C.A. & Mathies, R.A. Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis. Lab Chip 1, 102–107 (2001).

    Article  CAS  Google Scholar 

  9. Heller, M.J. DNA microarray technology: devices, systems, and applications. Annu. Rev. Biomed. Eng. 4, 129–153 (2002).

    Article  CAS  Google Scholar 

  10. Zhang, Y. & Ozdemir, P. Microfluidic DNA amplification—a review. Anal. Chim. Acta. 638, 115–125 (2009).

    Article  CAS  Google Scholar 

  11. Focke, M. et al. Microstructuring of polymer films for sensitive genotyping by real-time PCR on a centrifugal microfluidic platform. Lap Chip 10, 2519–2526 (2010).

    Article  CAS  Google Scholar 

  12. Yu, H. et al. A simple, disposable microfluidic device for rapid protein concentration and purification via direct printing. Lab Chip 8, 1496–1501.

    Article  CAS  Google Scholar 

  13. Zhu, Z., Lu, J.J. & Liu, S. Protein separation by capillary gel electrophoresis: a review. Anal. Chim. Acta. 709, 21–31 (2012).

    Article  CAS  Google Scholar 

  14. Gao, J., Yin, X.-F. & Fang, Z.-L. Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab Chip 4, 47–52 (2004).

    Article  CAS  Google Scholar 

  15. Lindström, S. & Andersson-Svahn, H. Overview of single-cell analyses: microdevices and applications. Lab Chip 10, 3363–3372 (2010).

    Article  Google Scholar 

  16. Le Roux, D. et al. Integrated sample-in-answer-out microfluidic chip for rapid human identification by STR analysis. Lab Chip 14, 4415–4425 (2014).

    Article  CAS  Google Scholar 

  17. LaRue, B.L., Moore, A., King, J.L., Marshall, P.L. & Budowle, B. An evaluation of the RapidHIT® system for reliably genotyping reference samples. F 13, 104–111 (2014).

    CAS  Google Scholar 

  18. Tan, E. et al. Fully integrated, fully automated generation of short tandem repeat profiles. Invest. Genet. 4:16, 1–15 (2013).

    Google Scholar 

  19. Chin, C.D. et al. Microfluidics-based diagnostics of infectious diseases in the developing world. Nat. Med. 17, 1015–1019 (2011).

    Article  CAS  Google Scholar 

  20. Fiorini, G.S. & Chiu, D.T. Disposable microfluidic devices: fabrication, function, and application. Biotechniques 38, 429–446 (2005).

    Article  CAS  Google Scholar 

  21. Moreau, W.M. Semiconductor Lithography: Principles and Materials (Plenum, 1998).

  22. Xia, Y. & Whitesides, G.M. Soft lithography. Angew. Chem. Int. Ed. 37, 550–575 (1998).

    Article  CAS  Google Scholar 

  23. Whitesides, G.M., Ostuni, E., Takayama, S., Jiang, X. & Ingber, D.E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).

    Article  CAS  Google Scholar 

  24. McDonald, J.C. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000).

    Article  CAS  Google Scholar 

  25. McDonald, J.C. & Whitesides, G.M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491–499 (2002).

    Article  CAS  Google Scholar 

  26. Duffy, D.C., Schueller, O.J.A., Brittain, S.T. & Whitesides, G.M. Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow. J. Micromech. Microeng. 9, 211–217 (1999).

    Article  CAS  Google Scholar 

  27. Unger, M.A., Chou, H.-P., Thorsen, T., Scherer, A. & Quake, S.R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000).

    Article  CAS  Google Scholar 

  28. Thorsen, T., Maerkl, S.J. & Quake, S.R. Microfluidic large-scale integration. Science 298, 580–584 (2002).

    Article  CAS  Google Scholar 

  29. Phanneuf, C. et al. Sensitive, microliter PCR with consensus degenerate primers for Epstein-Barr virus amplification. Biomed. Microdevices 15, 221–231 (2013).

    Article  Google Scholar 

  30. Ouyang, Y. et al. Rapid patterning of 'tunable' hydrophobic valves on disposable microchips by laser printer lithography. Lab Chip 13, 1762–1771 (2013).

    Article  CAS  Google Scholar 

  31. Lounsbury, J.L. & Landers, J.P. Ultrafast amplification of DNA on plastic microdevices for forensic STR analysis. J. Forensic Sci. 58, 866–874 (2013).

    Article  CAS  Google Scholar 

  32. Sollier, E., Murray, C., Maoddi, P. & Di Carlo, D. Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 11, 3752–3765 (2011).

    Article  CAS  Google Scholar 

  33. Hoople, G.D. et al. Comparison of microscale rapid prototyping techniques. J. Micro- and Nano-Manufact. 2, 034502-1–034502-6 (2014).

    Article  Google Scholar 

  34. Bartholomeusz, D.A., Boutté, R.W. & Andrade, J.D. Xurography: rapid prototyping of microstructures using a cutting plotter. J. Microelectromech. Syst. 14, 1364–1374 (2005).

    Article  Google Scholar 

  35. Duarte, G.R.M., Price, C.W., Augustine, B.H., Carrilho, E. & Landers, J.P. Dynamic solid phase DNA extraction and PCR amplification in polyester-toner based microchip. Anal. Chem. 83, 5182–5189 (2011).

    Article  CAS  Google Scholar 

  36. Duarte, G.R.M. et al. Disposable polyester-toner electrophoresis microchips for DNA analysis. Analyst 137, 2692–2698 (2012).

    Article  CAS  Google Scholar 

  37. Leslie, D.C. et al. New detection modality for label-free quantification of DNA in biological samples via superparamagnetic bead aggregation. J. Am. Chem. Soc. 134, 5689–5696 (2012).

    Article  CAS  Google Scholar 

  38. do Lago, C.L., Silva, H.D.T., Neves, C.A., Brito-Neto, J.G.A. & Silva, J.A.F. A dry lamination process for production of microfluidic devices based on the lamination of laser-printed polyester films. Anal. Chem. 75, 3853–3858 (2003).

    Article  CAS  Google Scholar 

  39. Madou, M. et al. Lab on a CD. Annu. Rev. Biomed. Eng. 8, 601–628 (2006).

    Article  CAS  Google Scholar 

  40. Tan, A., Rodgers, K., Murrihy, J.P., O'Mathuna, C. & Glennon, J.D. Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopying. Lab Chip 1, 7–9 (2001).

    Article  CAS  Google Scholar 

  41. Arthur D Little Inc. Report to International Business Machines Corporation; investigation of two haloid-Xerox machines as new product opportunities in the office reproducing equipment field, mimeo, (Dec 1, C-61613, 1958).

  42. Li, J. et al. Label-free method for cell counting in crude biological samples via paramagnetic bead aggregation. Anal. Chem. 85, 11233–11239 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding from the US National Institutes of Health grant number 5R01EB011591-04. We also acknowledge invaluable discussions with D. Haverstick and J. Li.

Author information

Authors and Affiliations

Authors

Contributions

B.L.T., S.T.K. and Y.O. designed the chips. Y.O. and G.R.M.D. were critical in the development of the early protocol. E.C. helped develop the concept. B.L.T. and Y.O. conducted the experiments. B.L.T., Y.O. and J.P.L. analyzed the data. B.L.T. and J.P.L. wrote the paper.

Corresponding author

Correspondence to James P Landers.

Supplementary information

Supplementary Text and Figures

Supplementary Methods (PDF 209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, B., Ouyang, Y., Duarte, G. et al. Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method. Nat Protoc 10, 875–886 (2015). https://doi.org/10.1038/nprot.2015.051

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.051

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing