Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation of chiral quantum dots

Abstract

Chiral quantum dots (QDs) are expected to have a range of potential applications in photocatalysis, as specific antibacterial and cytotoxic drug-delivery agents, in assays, as sensors in asymmetric synthesis and enantioseparation, and as fluorescent chiral nanoprobes in biomedical and analytical technologies. In this protocol, we present procedures for the synthesis of chiral optically active QD nanostructures and their quality control using spectroscopic studies and transmission electron microscopy imaging. We closely examine various synthetic routes for the preparation of chiral CdS, CdSe, CdTe and doped ZnS QDs, as well as of chiral CdS nanotetrapods. Most of these nanomaterials can be produced by a very fast (70 s) microwave-induced heating of the corresponding precursors in the presence of D- or L-chiral stabilizing coating ligands (stabilizers), which are crucial to generating optically active chiral QDs. Alternatively, chiral QDs can also be produced via the conventional hot injection technique, followed by a phase transfer in the presence of an appropriate chiral stabilizer. We demonstrate that the properties, structure and behavior of chiral QD nanostructures, as determined by various spectroscopic techniques, strongly depend on chiral stabilizers and that the chiral effects induced by them can be controlled via synthetic procedures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Images relevant to troubleshooting.
Figure 4: Characterization of particles prepared as described in Step 1A.
Figure 5: UV-visible spectra of nanotetrapods prepared as described in Step 2A.
Figure 6: CD spectra of nanotetrapods prepared as described in Step 2A.
Figure 7: TEM images of nanotetrapods prepared as described in Step 2A.
Figure 8: Characterization of nanoparticles prepared as described in Step 3B.
Figure 9
Figure 10: Electron images of nanoparticles prepared as described in Step 3B.
Figure 11
Figure 12: Characterization of nanoparticles after phase transfer in Step 3B.
Figure 13: Characterization of nanoparticles after 2 d of stirring, as described in Step 3B.
Figure 14

Similar content being viewed by others

References

  1. Ben-Moshe, A., Maoz, B.M., Govorov, A.O. & Markovich, G. Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances. Chem. Soc. Rev. 42, 7028–7041 (2013).

    Article  CAS  Google Scholar 

  2. Govorov, A.O. et al. Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects. J. Mater. Chem. 21, 16806–16818 (2011).

    Article  CAS  Google Scholar 

  3. Guerrero-Martinez, A., Lorenzo Alonso-Gomez, J., Auguie, B., Magdalena Cid, M. & Liz-Marzan, L.M. From individual to collective chirality in metal nanoparticles. Nano Today 6, 381–400 (2011).

    Article  CAS  Google Scholar 

  4. Wang, Y., Xu, J., Wang, Y. & Chen, H. Emerging chirality in nanoscience. Chem. Soc. Rev. 42, 2930–2962 (2013).

    Article  CAS  Google Scholar 

  5. Wang, J., Liu, S., Zhang, C., Xu, H. & Yang, X. Synthesis and applications of chiral nano-silica. Prog. Chem. 23, 669–678 (2011).

    CAS  Google Scholar 

  6. Liu, H., Shen, X., Wang, Z.-G., Kuzyk, A. & Ding, B. Helical nanostructures based on DNA self-assembly. Nanoscale 6, 9331–9338 (2014).

    Article  CAS  Google Scholar 

  7. Ben-Moshe, A. et al. Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat. Commun. 5, 430 (2014).

    Article  Google Scholar 

  8. Yeom, B. et al. Chiral plasmonic nanostructures on achiral nanopillars. Nano Lett. 13, 5277–5283 (2013).

    Article  CAS  Google Scholar 

  9. Gerard, V.A., Gun'ko, Y.K., Defrancq, E. & Govorov, A.O. Plasmon-induced CD response of oligonucleotide-conjugated metal nanoparticles. Chem. Commun. 47, 7383–7385 (2011).

    Article  CAS  Google Scholar 

  10. Zhao, Y. et al. Alternating plasmonic nanoparticle heterochains made by polymerase chain reaction and their optical properties. J. Phys. Chem. Lett. 4, 641–647 (2013).

    Article  CAS  Google Scholar 

  11. Song, L., Wang, S., Kotov, N.A. & Xia, Y. Nonexclusive fluorescent sensing for L/Denantiomers enabled by dynamic nanoparticle-nanorod assemblies. Anal. Chem. 84, 7330–7335 (2012).

    Article  CAS  Google Scholar 

  12. Moloney, M.P., Gun'ko, Y.K. & Kelly, J.M. Chiral highly luminescent CdS quantum dots. Chem. Commun. 2007, 3900–3902 (2007).

    Article  Google Scholar 

  13. Elliott, S.D., Moloney, M.P. & Gun'ko, Y.K. Chiral shells and achiral cores in CdS quantum dots. Nano Lett. 8, 2452–2457 (2008).

    Article  CAS  Google Scholar 

  14. Gallagher, S.A. et al. Synthesis and spectroscopic studies of chiral CdSe quantum dots. J. Mater. Chem. 20, 8350–8355 (2010).

    Article  CAS  Google Scholar 

  15. Moloney, M.P., Gallagher, S.A. & Gun'ko, Y.K. Chiral CdTe quantum dots. MRS Proceedings 1241 http://dx.doi.org/10.1557/PROC-1241-XX02-10 (2009).

  16. Gerard, V.A., Freeley, M., Defrancq, E., Fedorov, A.V. & Gun'ko, Y.K. Optical properties and in vitro biological studies of oligonucleotide-modified quantum dots. J. Nanomater. 2013 http://dx.doi.org/10.1155/2013/463951 (2013).

  17. Govan, J.E., Jan, E., Querejeta, A., Kotov, N.A. & Gun'ko, Y.K. Chiral luminescent CdS nano-tetrapods. Chem. Commun. 46, 6072–6074 (2010).

    Article  CAS  Google Scholar 

  18. Xia, Y., Zhou, Y. & Tang, Z. Chiral inorganic nanoparticles: origin, optical properties and bioapplications. Nanoscale 3, 1374–1382 (2011).

    Article  CAS  Google Scholar 

  19. Nakashima, T., Kobayashi, Y. & Kawai, T. Optical activity and chiral memory of thiol-capped CdTe nanocrystals. J. Am. Chem. Soc. 131, 10342–10343 (2009).

    Article  CAS  Google Scholar 

  20. Zhou, Y., Yang, M., Sun, K., Tang, Z. & Kotov, N.A. Similar topological origin of chiral centers in organic and nanoscale inorganic structures: effect of stabilizer chirality on optical isomerism and growth of CdTe nanocrystals. J. Am. Chem. Soc. 132, 6006–6013 (2010).

    Article  CAS  Google Scholar 

  21. Tohgha, U. et al. Ligand induced circular dichroism and circularly polarized luminescence in CdSe quantum dots. ACS Nano 7, 11094–11102 (2013).

    Article  CAS  Google Scholar 

  22. Tohgha, U., Varga, K. & Balaz, M. Achiral CdSe quantum dots exhibit optical activity in the visible region upon post-synthetic ligand exchange with D- or L-cysteine. Chem. Commun. 49, 1844–1846 (2013).

    Article  CAS  Google Scholar 

  23. Gun'ko, Y.K., Moloney, M.M., Gallagher, S., Govan, J. & Hanley, C. New quantum dot sensors. SPIE 7679 http://dx.doi.org/10.1155/2013/463951 (2010).

  24. Carrillo-Carrion, C., Cardenas, S., Simonet, B.M. & Valcarcel, M. Selective quantification of carnitine enantiomers using chiral cysteine-capped CdSe(ZnS) quantum dots. Anal. Chem. 81, 4730–4733 (2009).

    Article  CAS  Google Scholar 

  25. Delgado-Pérez, T., Bouchet, L.M., de la Guardia, M., Galian, R.E. & Pérez-Prieto, J. Sensing chiral drugs by using CdSe/ZnS nanoparticles capped with N-acetyl-L-cysteine methyl ester. Chemistry 19, 11068–11076 (2013).

    Article  Google Scholar 

  26. Shah, E. & Soni, H.P. Inducing chirality on ZnS nanoparticles for asymmetric aldol condensation reactions. RSC Adv. 3, 17453–17461 (2013).

    Article  CAS  Google Scholar 

  27. Zhu, Z. et al. Controllable optical activity of gold nanorod and chiral quantum dot assemblies. Angew. Chem. Int. Ed. 52, 13571–13575 (2013).

    Article  CAS  Google Scholar 

  28. Chen, M. et al. Synthesis of rod-, twinrod-, and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallization technique. J. Mater. Chem. 12, 748–753 (2002).

    Article  CAS  Google Scholar 

  29. Fiore, A. et al. Tetrapod-shaped colloidal nanocrystals of II:VI semiconductors prepared by seeded growth. J. Am. Chem. Soc. 131, 2274–2282 (2009).

    Article  CAS  Google Scholar 

  30. Pang, Q. et al. CdSe nano-tetrapods: controllable synthesis, structure analysis, and electronic and optical properties. Chem. Mater. 17, 5263–5267 (2005).

    Article  CAS  Google Scholar 

  31. Xie, R.G., Kolb, U. & Basche, T. Design and synthesis of colloidal nanocrystal heterostructures with tetrapod morphology. Small 2, 1454–1457 (2006).

    Article  CAS  Google Scholar 

  32. Zhang, J.Y. & Yu, W.W. Formation of CdTe nanostructures with dot, rod, and tetrapod shapes. Appl. Phys. Lett. 89, 3 (2006).

    Google Scholar 

  33. Gaponik, N. et al. Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J. Phys. Chem. B 106, 7177–7185 (2002).

    Article  CAS  Google Scholar 

  34. Raevskaya, A.E. et al. Growth and spectroscopic characterization of CdSe nanoparticles synthesized from CdCl2 and Na2SeSO3 in aqueous gelatine solutions. Colloids Surf. A 290, 304–309 (2006).

    Article  CAS  Google Scholar 

  35. Yang, Y.J. & Xiang, B.J. Wet synthesis of nearly monodisperse CdSe nanoparticles at room temperature. J. Cryst. Growth 284, 453–458 (2005).

    Article  CAS  Google Scholar 

  36. Bhuse, V.M., Hankare, P.P., Garadkar, K.M. & Khomane, A.S. A simple, convenient, low-temperature route to grow polycrystalline copper selenide thin films. Mater. Chem. Phys. 80, 82–88 (2003).

    Article  CAS  Google Scholar 

  37. He, Y. et al. Synthesis of CdTe nanocrystals through program process of microwave irradiation. J. Phys. Chem. B 110, 13352–13356 (2006).

    Article  CAS  Google Scholar 

  38. He, Y. et al. Microwave-assisted synthesis of water-dispersed CdTe nanocrystals with high luminescent efficiency and narrow size distribution. Chem. Mater. 19, 359–365 (2007).

    Article  CAS  Google Scholar 

  39. Bao, H. One-pot synthesis of CdTe nanocrystals and shape control of luminescent CdTe-cystine nanocomposites. Small 2, 476–480 (2006).

    Article  CAS  Google Scholar 

  40. Yu, W.W. & Peng, X.G. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew. Chem. Int. Ed. 41, 2368–2371 (2002).

    Article  CAS  Google Scholar 

  41. Pan, Z. et al. Highly efficient inverted Type-I CdS/CdSe core/shell structure QD-sensitized solar cells. ACS Nano 6, 3982–3991 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Science Foundation Ireland (grant no. SFI 12/IA/1300), by a FP7 FutureNanoNeeds grant and by the Ministry of Education and Science of the Russian Federation (grant no. 14.B25.31.0002).

Author information

Authors and Affiliations

Authors

Contributions

M.P.M., J.G. and A.L. performed the synthesis and characterization of quantum nanostructures. M.M. performed phase-transfer studies of chiral nanostructures. M.P.M., J.G., A.L. and Y.K.G. developed the protocols and wrote the manuscript.

Corresponding author

Correspondence to Yurii K Gun'ko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moloney, M., Govan, J., Loudon, A. et al. Preparation of chiral quantum dots. Nat Protoc 10, 558–573 (2015). https://doi.org/10.1038/nprot.2015.028

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.028

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing