Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells

Abstract

Airway epithelial cells are of great interest for research on lung development, regeneration and disease modeling. This protocol describes how to generate cystic fibrosis (CF) transmembrane conductance regulator protein (CFTR)-expressing airway epithelial cells from human pluripotent stem cells (PSCs). The stepwise approach from PSC culture to differentiation into progenitors and then mature epithelia with apical CFTR activity is outlined. Human PSCs that were inefficient at endoderm differentiation using our previous lung differentiation protocol were able to generate substantial lung progenitor cell populations. Augmented CFTR activity can be observed in all cultures as early as at 35 d of differentiation, and full maturation of the cells in air-liquid interface cultures occurs in <5 weeks. This protocol can be used for drug discovery, tissue regeneration or disease modeling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Photomicrograph image of stage 1 DE cells after 4 d of StemDiff DE treatment.
Figure 3: Stage 2 differentiation.
Figure 4: Comparison of gene expression levels associated with lung, liver, pancreas and thyroid after 5 weeks of ALI using our previous protocol with FGF2 and SHH to induce anterior foregut and lung specification39 versus TGF-β and BMP4 inhibition46.
Figure 5: Stage 3 differentiation.
Figure 6: Stage 4 differentiation.
Figure 7: Stage 5 differentiation.

Similar content being viewed by others

References

  1. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Zwi, L. et al. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 120, 1513–1523 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Keirstead, H.S. Human embryonic stem cell–derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci. 25, 4694–4705 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Soldner, F. et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136, 964–977 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Phillips, M.J. et al. Modeling human retinal development with patient-specific induced pluripotent stem cells reveals multiple roles for visual system homeobox 2. Stem Cells 32, 1480–1492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cai, J. et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 45, 1229–1239 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Spence, J.R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nostro, M.C. et al. Stage-specific signaling through TGF family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138, 861–871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Selekman, J.A., Grundl, N.J., Kolz, J.M. & Palecek, S.P. Efficient generation of functional epithelial and epidermal cells from human pluripotent stem cells under defined conditions. Tissue Eng. Part C Methods 19, 949–960 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rezania, A. et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61, 2016–2029 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Orlova, V.V. et al. Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nat. Protoc. 9, 1514–1531 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Shcheglovitov, A. et al. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature 503, 267–271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yaghi, A., Zaman, A. & Dolovich, M. Primary human bronchial epithelial cells grown from explants. J. Vis. Exp. doi.org/10.3791/1789 (2010).

  15. de Jong, P.M., van Sterkenburg, M.A., Kempenaar, J.A., Dijkman, J.H. & Ponec, M. Serial culturing of human bronchial epithelial cells derived from biopsies. In vitro Cell. Dev. Biol. Anim. 29A, 379–387 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Forrest, I.A. et al. Primary airway epithelial cell culture from lung transplant recipients. Eur. Resp. J. 26, 1080–1085 (2005).

    Article  CAS  Google Scholar 

  17. Zhao, L., Yee, M. & O'Reilly, M.A. Transdifferentiation of alveolar epithelial type II to type I cells is controlled by opposing TGF-β and BMP signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 305, L409–L418 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kasai, H., Allen, J.T., Mason, R.M., Kamimura, T. & Zhang, Z. TGF-β1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Resp. Res. 6, 56 (2005).

    Article  Google Scholar 

  19. Warshamana, G.S., Corti, M. & Brody, A.R. TNF-α, PDGF, and TGF-β1 expression by primary mouse bronchiolar-alveolar epithelial and mesenchymal cells: TNF-α induces TGF-β1. Exp. Mol. Pathol. 71, 13–33 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Tanjore, H. et al. Alveolar epithelial cells undergo epithelial-to-mesenchymal transition in response to endoplasmic reticulum stress. J. Biol. Chem. 286, 30972–30980 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vaughan, M.B., Ramirez, R.D., Wright, W.E., Minna, J.D. & Shay, J.W. A three-dimensional model of differentiation of immortalized human bronchial epithelial cells. Differentiation 74, 141–148 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Delgado, O. et al. Multipotent capacity of immortalized human bronchial epithelial cells. PLoS ONE 6, e22023 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ott, H.C. et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat. Med. 16, 927–933 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Lam, E., Ramke, M., Groos, S., Warnecke, G. & Heim, A. A differentiated porcine bronchial epithelial cell culture model for studying human adenovirus tropism and virulence. J. Virol. Methods 178, 117–123 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Dupuis, A., Hamilton, D., Cole, D.E.C. & Corey, M. Cystic fibrosis birth rates in Canada: a decreasing trend since the onset of genetic testing. J. Pediatr. 147, 312–315 (2005).

    Article  PubMed  Google Scholar 

  26. Riordan, J.R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Vanscoy, L.L. et al. Heritability of lung disease severity in cystic fibrosis. Am. J. Respir. Crit. Care Med. 175, 1036–1043 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, W. et al. Understanding the population structure of North American patients with cystic fibrosis. Clin. Genet. 79, 136–146 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Samadikuchaksaraei, A. & Bishop, A.E. Effects of growth factors on the differentiation of murine ESC into type II pneumocytes. Cloning Stem Cells 9, 407–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Samadikuchaksaraei, A. et al. Derivation of distal airway epithelium from human embryonic stem cells. Tissue Eng. 12, 867–875 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Van Vranken, B.E. et al. Coculture of embryonic stem cells with pulmonary mesenchyme: a microenvironment that promotes differentiation of pulmonary epithelium. Tissue Eng. 11, 1177–1187 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Ali, N.N. et al. Derivation of type II alveolar epithelial cells from murine embryonic stem cells. Tissue Eng. 8, 541–550 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Roszell, B. et al. Efficient derivation of alveolar type II cells from embryonic stem cells for in vivo application. Tissue Eng. Part A 15, 3351–3365 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rippon, H.J. et al. Embryonic stem cells as a source of pulmonary epithelium in vitro and in vivo. Proc. Am. Thorac. Soc. 5, 717–722 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Coraux, C. Embryonic stem cells generate airway epithelial tissue. Am. J. Respir. Cell Mol. Biol. 32, 87–92 (2004).

    Article  PubMed  Google Scholar 

  36. Ameri, J. et al. FGF2 specifies hESC-derived definitive endoderm into foregut/midgut cell lineages in a concentration-dependent manner. Stem Cells 28, 45–56 (2009).

    Google Scholar 

  37. Van Haute, L., De Block, G., Liebaers, I., Sermon, K. & De Rycke, M. Generation of lung epithelial-like tissue from human embryonic stem cells. Resp. Res. 10, 105 (2009).

    Article  Google Scholar 

  38. Wang, D., Haviland, D.L., Burns, A.R., Zsigmond, E. & Wetsel, R.A. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 104, 4449–4454 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong, A.P. et al. Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat. Biotechnol. 30, 876–882 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang, S.X.L. et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat. Biotechnol. 32, 84–91 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Firth, A.L. et al. Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 111, E1723–E1730 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ghaedi, M. et al. Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J. Clin. Invest. 123, 4950–4962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Serls, A.E., Doherty, S., Parvatiyar, P., Wells, J.M. & Deutsch, G.H. Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development 132, 35–47 (2005).

    CAS  PubMed  Google Scholar 

  44. Bellusci, S. et al. Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development 124, 53–63 (1997).

    CAS  PubMed  Google Scholar 

  45. Kim, S.K. & Melton, D.A. Pancreas development is promoted by cyclopamine, a hedgehog signaling inhibitor. Proc. Natl. Acad. Sci. USA 95, 13036–13041 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Green, M.D. et al. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat. Biotechnol. 29, 267–272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J.R. Riordan (University of North Carolina) for providing the monoclonal antibodies specific to CFTR (nos. 450, 596 and 660). This work was funded by the Canadian Institutes of Health Research (GPG-102171) to C.E.B. and J.R. A.P.W. was the recipient of the Cystic Fibrosis Canada postdoctoral fellowship. The CA1 hESC line was obtained from A. Nagy (Mount Sinai Hospital). H9 hESCs were obtained from The WiCell Research Institute. CF iPSC line GM00997 and GM04320 were obtained from J. Ellis (Hospital for Sick Children).

Author information

Authors and Affiliations

Authors

Contributions

A.P.W., J.R. and C.E.B. conceived the study and the experimental design. A.P.W. performed and analyzed the experiments and wrote the manuscript. J.G., S.C. and S.X. performed the experiments and helped in preparing manuscript figures. All authors edited and approved the final manuscript.

Corresponding authors

Correspondence to Amy P Wong or Janet Rossant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, A., Chin, S., Xia, S. et al. Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells. Nat Protoc 10, 363–381 (2015). https://doi.org/10.1038/nprot.2015.021

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.021

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing