Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Protein reconstitution into freestanding planar lipid membranes for electrophysiological characterization

Abstract

The reconstitution of channel-forming proteins into planar lipid bilayers enables their functional characterization at very low (sometimes below attomolar) concentrations. We describe the three main approaches used in our laboratories (the Mueller-Rudin technique, in which the bilayers contain an organic solvent, the Montal-Mueller or solvent-free technique, and a method for membrane reconstitution via liposome formation), and we discuss their respective advantages and limitations. Despite the differences in the reconstitution procedures, subsequent protein characterization is based on the same electrophysiological technique. A transmembrane electric field is applied, inducing an ion current and allowing conclusions to be drawn on apparent pore sizes, or suggesting functional properties such as channel opening and closing upon ligand binding, pH-induced conformational changes, ion selectivity or substrate specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two methods for forming lipid membrane patches.
Figure 2: Typical experimental bilayer setup.
Figure 3: Adapted patch-clamp setup for the formation of small lipid bilayers on nanopipettes12.
Figure 4: Lipid ion channel events in a synthetic lipid membrane made of a mixture of di-myristoyl-phosphatidyl-choline (DMPC) and di-lauroyl-phosphatidyl-choline (DLPC) in a 150 mM NaCl solution.
Figure 5: Reconstitution of a single trimeric maltoporin channel into a virtually solvent-free planar lipid bilayer and application of −150 mV transmembrane voltage cause an ion current.

Similar content being viewed by others

References

  1. Benz, R., Janko, K., Boos, W. & Läuger, P. Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. Biochim. Biophys. Acta 511, 305–319 (1978).

    Article  CAS  PubMed  Google Scholar 

  2. Luckey, M. & Nikaido, H. Diffusion of solutes through channels produced by phage λ receptor protein of Escherichia coli: inhibition by higher oligosaccharides of maltose series. Biochem. Biophys. Res. Commun. 93, 166–171 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Nikaido, H. Porins and specific channels of bacterial outer membranes. Mol. Microbiol. 6, 435–442 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Sakmann, B. & Neher, E. in Single-Channel Recordings (Plenum Press, 1983).

  5. Mueller, P., Rudin, D.O., Tien, H.T. & Wescott, W.C. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194, 979–980 (1962).

    Article  CAS  PubMed  Google Scholar 

  6. Montal, M. & Mueller, P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. USA 69, 3561–3566 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).

    Article  CAS  PubMed  Google Scholar 

  8. Montal, M., Darszon, A. & Schindler, H.G. Functional reassembly of membrane proteins in planar lipid bilayers. Q. Rev. Biophys. 14, 1–79 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. Nekolla, S., Andersen, C. & Benz, R. Noise analysis of ion current through the open and the sugar-induced closed state of the LamB channel of Escherichia coli outer membrane: evaluation of the sugar binding kinetics to the channel interior. Biophys. J. 66, 1388–1397 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hagge, S.O. et al. Pore formation and function of phosphoporin PhoE of Escherichia coli are determined by the core sugar moiety of lipopolysaccharide. J. Biol. Chem. 277, 34247–34253 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Wilmsen, U., Methfessel, C., Hanke, W. & Boheim, G. in Physical Chemistry of Transmembrane Ion Motions (ed. Troyanowsky, C.) (Elsevier, 1983).

  12. Gornall, J.L. et al. Simple reconstitution of protein pores in nano lipid bilayers. Nano Lett. 11, 3334–3340 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Schmidt, C., Mayer, M. & Vogel, H. A chip-based biosensor for the functional analysis of single ion channels. Angew. Chem. Int. Ed. 39, 3137–3140 (2000).

    Article  CAS  Google Scholar 

  14. Dilger, J.P. & Benz, R. Optical and electrical properties of thin monoolein lipid bilayers. J. Membr. Biol. 85, 181–189 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Bähr, G., Diederich, A., Vergères, G. & Winterhalter, M. Interaction of the effector domain of MARCKS and MARCKS-related protein with lipid membranes revealed by electric potential measurements. Biochemistry. 37, 16252–16261 (1998).

    Article  PubMed  Google Scholar 

  16. Hagge, S.O., Wiese, A., Seydel, U. & Gutsmann, T. Inner field compensation as a tool for the characterization of asymmetric membranes and peptide-membrane interactions. Biophys. J. 86, 913–922 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coronado, R. & Latorre, R. Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophys. J. 43, 231–236 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hanke, W., Methfessel, C., Wilmsen, U. & Boheim, G. Ion channel reconstitution into lipid bilayer-membranes on glass patch pipettes. Bioelectrochem. Bioenerget. 12, 329–339 (1984).

    Article  CAS  Google Scholar 

  19. Sondermann, M., George, M., Fertig, N. & Behrends, J.C. High-resolution electrophysiology on a chip: transient dynamics of alamethicin channel formation. Biochim. Biophys. Acta 1758, 541–551 (2006).

    Google Scholar 

  20. White, R.J. et al. Single ion-channel recordings using glass nanopore membranes. J. Am. Chem. Soc. 129, 11766–11775 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Schibel, A.E.P., Edwards, T., Kawano, R., Lan, W. & White, H.S. Quartz nanopore membranes for suspended bilayer ion channel recordings. Anal. Chem. 82, 7259–7266 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Goepfrich, K., Kulkarni, C.V., Pambos, O. & Keyser, U.F. Lipid nanobilayers to host biological nanopores for DNA translocations. Langmuir 29, 355–364 (2013).

    Article  CAS  Google Scholar 

  23. Danelon, C., Suenaga, A., Winterhalter, M. & Yamato, I. Molecular origin of the cation selectivity in OmpF porin: single channel conductances vs. free energy calculation. Biophys. Chem. 104, 591–603 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Orlik, F., Andersen, C., Danelon, C., Winterhalter, M., Pajatsch, M., Böck, A. & Benz, R. CymA of Klebsiella oxytoca outer membrane: binding of cyclodextrins and study of the current noise of the open channel. Biophys. J. 85, 876–885 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Danelon, C., Brando, T. & Winterhalter, M. Probing the orientation of reconstituted maltoporin channels at the single-protein level. J. Biol. Chem. 278, 35542–35551 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Schwarz, G., Danelon, C. & Winterhalter, M. On translocation through a membrane channel via an internal binding site: kinetics and voltage dependence. Biophys. J. 84, 2990–2998 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mahendran, K.R., Chimerel, C., Mach, T. & Winterhalter, M. Antibiotic translocation through membrane channels: temperature dependent ion current fluctuation for catching the fast events. Eur. Biophys. J. 38, 1141–1145 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Mahendran, K.R., Lamichhane, U., Romero-Ruiz, M., Nussberger, S. & Winterhalter, M. Polypeptide translocation through mitochondrial TOM channel: temperature dependent rates at single molecule level. J. Phys. Chem. Lett. 4, 78–82 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Singh, P. et al. Pulling peptides across nanochannels: resolving peptide binding and translocation through the hetero-oligomeric channel from Nocardia farcinica. ACS Nano. 6, 10699–10707 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Brauser, A. et al. Modulation of enrofloxacin binding in OmpF by Mg2+ as revealed by the analysis of fast flickering single-porin current. J. Gen. Physiol. 140, 69–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Laub, K.R. et al. Comparing ion conductance recordings of synthetic lipid bilayers with cell membranes containing TRP channels. Biochim. Biophys. Acta 1818, 1123–1134 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Antonov, V., Petrov, V., Molnar, A., Predvoditelev, D. & Ivanov, A. The appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition temperature. Nature 283, 585–586 (1980).

    Article  CAS  PubMed  Google Scholar 

  33. Heimburg, T. Thermal Biophysics of Membranes (Wiley-VCH, Weinheim, 2007).

  34. Heimburg, T. Lipid ion channels. Biophys. Chem. 150, 2–22 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Mosgaard, L.D. & Heimburg, T. Lipid ion channels and the role of proteins. Acc. Chem. Res. 46, 2966–2976 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Blicher, A. & Heimburg, T. Voltage-gated lipid ion channels. PLoS ONE 8, e65707 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lindey, H., Petersen, N.O. & Chan, S.I. Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems. Biochim. Biophys. Acta 555, 147–167 (1979).

    Article  Google Scholar 

  38. Brullemans, M. & Tancrede, P. Influence of torus on the capacitance of asymmetrical phospholipid bilayers. Biophys. Chem. 27, 225–231 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Wolfe, A.J., Mohammad, M.M., Cheley, S., Bayley, H. & Movileanu, L. Catalyzing the translocation of polypeptides through attractive interactions. J. Am. Chem. Soc. 129, 14034–14041 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Angelova, M.I. & Dimitrov, D.S. Liposome electroformation. Faraday Disc. 81, 303–311 (1986).

    Article  CAS  Google Scholar 

  41. Burn, J.R. et al. Lipid-bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor. Angew. Chem. Int. Ed. 52, 12069–12072 (2013).

    Article  CAS  Google Scholar 

  42. Holden, M.A., Jayasinghe, L., Daltrop, O., Mason, A. & Bayley, H. Direct transfer of membrane proteins from bacteria to planar bilayers for rapid screening by single-channel recording. Nat. Chem. Biol. 2, 314–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Nardin, C., Winterhalter, M. & Meier, W. Giant free standing films from ABA triblock copolymer. Langmuir 16, 7708–7712 (2000).

    Article  CAS  Google Scholar 

  44. Meier, W., Graff, A., Diederich, A. & Winterhalter, M. Stabilization of planar lipid membranes. Phys. Chem. Chem.Phys. 2, 4559–4562 (2000).

    Article  CAS  Google Scholar 

  45. Winterhalter, M. Lipid membranes in external electric fields: kinetics of large pore formation causing rupture. Adv. Colloid Interface Sci. 208, 121–128 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Schuster, B., Pum, D., Braha, O., Bayley, H. & Sleytr, U.B. Self-assembled α-hemolysin pores in an S-layer-supported lipid bilayer. Biochim. Biophys. Acta 1370, 280–288 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. van der Woude, A.D. et al. Differential detergent extraction of mycobacterium marinum cell envelope proteins identifies an extensively modified threonine-rich outer membrane protein with channel activity. J. Bacteriol. 195, 2050–2059 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mafakheri, S. et al. Discovery of a cell wall porin in the mycolic-acid-containing actinomycete Dietzia maris DSM 43672. FEBS J. 281, 2030–2041 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Mahendran, K. et al. Molecular basis of enrofloxacin translocation through a bacterial porin: when binding does not imply translocation. J. Phys. Chem. B 114, 5170–5179 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Mahendran, K.R. et al. Permeation through nanochannels: revealing fast kinetics. J. Phys. Condens. Matter 22, 454131 (2010).

    Article  PubMed  CAS  Google Scholar 

  51. Krasilnikov, O.V., Sabirov, R.Z., Ternovsky, V.I., Merzliak, P.G. & Tashmukhamedov, B.A. The structure of Staphylococcus aureus α-toxin-induced ionic channel. Gen. Physiol. Biophys. 7, 467–473 (1988).

    CAS  PubMed  Google Scholar 

  52. Chimerel, C., Movileanu, L., Pezeshki, S., Winterhalter, M. & Kleinekathöfer, U. Transport at the nanoscale: temperature dependence of ion conductance. Eur. Biophys. J. 38, 121–125 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Modi, N., Winterhalter, M. & Kleinekathöfer, U. Computational modeling of ion transport through nanopores. Nanoscale 4, 6166–6180 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Hille, B. Ion Channels of Excitable Membranes (Sunderland, 2001).

  55. Lopez, M.L., Garcia-Gimenez, E., Aguilella, V.M. & Alcaraz, A. Critical assessment of OmpF channel selectivity. J. Phys. Condens. Matter 22, 454106 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Pezeshki, S., Chimerel, C., Bessonov, A.N., Winterhalter, M. & Kleinekathöfer, U. Understanding ion conductance on a molecular level: an all-atom modeling of the bacterial porin OmpF. Biophys. J. 97, 1898–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Benz, R., Schmid, A., Nakae, T. & Vos-Scheperkeuter, G.H. Pore formation by LamB of Escherichia coli in lipid bilayer membranes. J. Bacteriol. 165, 978–986 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bezrukov, S.M. & Winterhalter, M. Examining noise sources at the single-molecule level: 1/f noise of an open maltoporin channel. Phys. Rev. Lett. 85, 202–205 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Petrov, A.G. Flexoelectricity of model and living membranes. Biochim. Biophys. Acta 1561, 1–25 (2001).

    Google Scholar 

  60. Lamichhane, U. et al. Peptide translocation through mesoscopic channel: binding kinetics at single-molecule level. Europ. Biophys. J. 42, 363–369 (2013).

    Article  CAS  Google Scholar 

  61. Morandat, S. & El Kirat, K. Solubilization of supported lipid membranes by octylglucoside observed by time-lapse atomic force microscopy. Colloid Surf. B 55, 179–184 (2007).

    Article  CAS  Google Scholar 

  62. Rigaud, J.L., Levy, D., Mosser, G. & Lambert, O. Detergent removal by non-polar polystyrene beads. Eur. Biophys. J. 27, 305–319 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results was conducted as part of the Translocation consortium, and it has received support from the Innovative Medicines Joint Undertaking under grant agreement no. 115525, resources which are composed of financial contributions from the EU's seventh framework program (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in-kind contribution, as well as grant no. Wi2278/18-1 from the Deutsche Forschungsgemeinschaft (DFG). U.K. acknowledges funding from a European Research Council starting grant.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to manuscript writing.

Corresponding author

Correspondence to Mathias Winterhalter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutsmann, T., Heimburg, T., Keyser, U. et al. Protein reconstitution into freestanding planar lipid membranes for electrophysiological characterization. Nat Protoc 10, 188–198 (2015). https://doi.org/10.1038/nprot.2015.003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.003

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing