Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reconstituting actomyosin-dependent mechanosensitive protein complexes in vitro


In many mechanosensitive biological processes, actin-binding proteins (ABPs) sense the force generated by the actomyosin cytoskeleton and respond by recruiting effector proteins. We developed an in vitro assay, with pure proteins, to observe the force-dependent binding of a protein to a cryptic binding site buried in the stretchable domain of an ABP. Here we describe the protocol to study the actomyosin-dependent binding of vinculin to the ABP talin. In this assay, talin is immobilized in 5-μm-diameter disc-shaped islands, which are regularly spaced by 35 μm and micropatterned on a glass coverslip. In response to the force generated by an actomyosin network, talin extension reveals cryptic vinculin-binding sites (VBSs). To follow this reaction, fluorescent proteins are visualized by total internal refection fluorescence (TIRF) microscopy. EGFP-vinculin fluorescence in talin-coated discs reveals the binding of vinculin to stretched talin. Actomyosin structures are visualized by the fluorescence of Alexa Fluor 594–labeled actin. This protocol describes the purification of the proteins, the preparation of the chamber in which talin is coated on a micropatterned surface, and the biochemical conditions to study several kinetic parameters of the actomyosin-dependent binding of vinculin to talin. A stable actomyosin network is used to measure the steady-state dissociation of vinculin from talin under constant force. In the presence of α-actinin-1, actomyosin cables undergo cycles of force application and release, allowing the measurement of vinculin dissociation associated with talin re-folding. Expression and purification of the proteins requires at least 3 weeks. The assay can be completed within 1 d.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Basic principle of the method described in this protocol.
Figure 2: Microscopy setup.
Figure 3: Vinculin dissociation at steady state.
Figure 4: Vinculin dissociation, associated with talin re-folding, after force release.
Figure 5
Figure 6: Examples of expected results.


  1. Hoffman, B.D., Grashoff, C. & Schwartz, M.A. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316–323 (2011).

    Article  CAS  Google Scholar 

  2. Gardel, M.L., Schneider, I.C., Aratyn-Schaus, Y. & Waterman, C.M. Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell Dev. Biol. 26, 315–333 (2010).

    Article  CAS  Google Scholar 

  3. Geiger, B., Spatz, J.P. & Bershadsky, A.D. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10, 21–33 (2009).

    Article  CAS  Google Scholar 

  4. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H.E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  5. del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009).

    Article  CAS  Google Scholar 

  6. Ciobanasu, C., Faivre, B. & Le Clainche, C. Actomyosin-dependent formation of the mechanosensitive talin-vinculin complex reinforces actin anchoring. Nat. Commun. 5, 3095 (2014).

    Article  Google Scholar 

  7. Yao, M. et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep. 4, 4610 (2014).

    Article  Google Scholar 

  8. Margadant, F. et al. Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLoS Biol. 9, e1001223 (2011).

    Article  CAS  Google Scholar 

  9. Hirata, H., Tatsumi, H., Lim, C.T. & Sokabe, M. Force-dependent vinculin binding to talin in live cells: a crucial step in anchoring the actin cytoskeleton to focal adhesions. Am. J. Physiol. Cell Physiol. 306, C607–C620 (2014).

    Article  CAS  Google Scholar 

  10. Ciobanasu, C., Faivre, B. & Le Clainche, C. Integrating actin dynamics, mechanotransduction and integrin activation: the multiple functions of actin binding proteins in focal adhesions. Eur. J. Cell Biol. 92, 339–348 (2013).

    Article  CAS  Google Scholar 

  11. Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. Alpha-Catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12, 533–542 (2010).

    Article  CAS  Google Scholar 

  12. Aragona, M. et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047–1059 (2013).

    Article  CAS  Google Scholar 

  13. Wirtz, D., Konstantopoulos, K. & Searson, P.C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011).

    Article  CAS  Google Scholar 

  14. Hu, K., Ji, L., Applegate, K.T., Danuser, G. & Waterman-Storer, C.M. Differential transmission of actin motion within focal adhesions. Science 315, 111–115 (2007).

    Article  CAS  Google Scholar 

  15. Murrell, M., Thoresen, T. & Gardel, M. Reconstitution of contractile actomyosin arrays. Methods Enzymol. 540, 265–282 (2014).

    Article  CAS  Google Scholar 

  16. Thoresen, T., Lenz, M. & Gardel, M.L. Thick filament length and isoform composition determine self-organized contractile units in actomyosin bundles. Biophys. J. 104, 655–665 (2013).

    Article  CAS  Google Scholar 

  17. Reymann, A.C. et al. Nucleation geometry governs ordered actin networks structures. Nat. Mater. 9, 827–832 (2010).

    Article  CAS  Google Scholar 

  18. Reymann, A.C. et al. Actin network architecture can determine myosin motor activity. Science 336, 1310–1314 (2012).

    Article  CAS  Google Scholar 

  19. Le Clainche, C. & Carlier, M.F. Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol. Rev. 88, 489–513 (2008).

    Article  CAS  Google Scholar 

  20. Carlier, M.F., Le Clainche, C., Wiesner, S. & Pantaloni, D. Actin-based motility: from molecules to movement. BioEssays 25, 336–345 (2003).

    Article  CAS  Google Scholar 

  21. Nag, S., Larsson, M., Robinson, R.C. & Burtnick, L.D. Gelsolin: the tail of a molecular gymnast. Cytoskeleton (Hoboken) 70, 360–384 (2013).

    Article  CAS  Google Scholar 

  22. Selve, N. & Wegner, A. Rate constants and equilibrium constants for binding of the gelsolin-actin complex to the barbed ends of actin filaments in the presence and absence of calcium. Eur. J. Biochem. 160, 379–387 (1986).

    Article  CAS  Google Scholar 

  23. Wiesner, S. et al. A biomimetic motility assay provides insight into the mechanism of actin-based motility. J. Cell Biol. 160, 387–398 (2003).

    Article  CAS  Google Scholar 

  24. Bernheim-Groswasser, A., Wiesner, S., Golsteyn, R.M., Carlier, M.F. & Sykes, C. The dynamics of actin-based motility depend on surface parameters. Nature 417, 308–311 (2002).

    Article  CAS  Google Scholar 

  25. Kuo, J.C., Han, X., Hsiao, C.T., Yates, J.R. III & Waterman, C.M. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation. Nat. Cell Biol. 13, 383–393 (2011).

    Article  CAS  Google Scholar 

  26. Schiller, H.B. & Fassler, R. Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Rep. 14, 509–519 (2013).

    Article  CAS  Google Scholar 

  27. Smith, M.A. et al. A zyxin-mediated mechanism for actin stress fiber maintenance and repair. Dev. Cell 19, 365–376 (2010).

    Article  CAS  Google Scholar 

  28. Turner, C.E., Glenney, J.R. Jr. & Burridge, K. Paxillin: a new vinculin-binding protein present in focal adhesions. J. Cell Biol. 111, 1059–1068 (1990).

    Article  CAS  Google Scholar 

  29. Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006).

    Article  CAS  Google Scholar 

  30. Klotzsch, E. et al. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc. Natl. Acad. Sci. USA 106, 18267–18272 (2009).

    Article  CAS  Google Scholar 

  31. Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nat. Methods 5, 605–607 (2008).

    Article  CAS  Google Scholar 

  32. Wiesner, S. Purification of skeletal muscle actin. Cell Biology: a Laboratory Handbook 3rd edn. Vol. 2, 173–175 (2006).

    Chapter  Google Scholar 

  33. Pollard, T.D. Myosin purification and characterization. Methods Cell Biol. 24, 333–371 (1982).

    Article  CAS  Google Scholar 

  34. Le Clainche, C. & Carlier, M.F. Actin-based motility assay. Curr. Protoc. Cell Biol. Chapter 12 Unit 12.7; doi:10.1002/0471143030.cb1207s24 (2004).

  35. Humphries, J.D. et al. Vinculin controls focal adhesion formation by direct interactions with talin and actin. J. Cell Biol. 179, 1043–1057 (2007).

    Article  CAS  Google Scholar 

  36. Carisey, A. et al. Vinculin regulates the recruitment and release of core focal adhesion proteins in a force-dependent manner. Curr. Biol. 23, 271–281 (2013).

    Article  CAS  Google Scholar 

Download references


C.L.C. is supported by the Agence Nationale pour la Recherche (ANR-09-JCJC-0111 ADERACTIN). We thank the members of the 'Cytokeleton Dynamics and Motility' team for helpful discussions.

Author information

Authors and Affiliations



C.C. and C.L.C. developed the microscopy assay, and acquired and analyzed the data presented in this protocol. B.F. cloned the cDNA and established the protocols to purify the proteins presented in this article. C.L.C. designed the experiments, supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Christophe Le Clainche.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ciobanasu, C., Faivre, B. & Le Clainche, C. Reconstituting actomyosin-dependent mechanosensitive protein complexes in vitro. Nat Protoc 10, 75–89 (2015).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing