Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes

Abstract

Tandem affinity purification coupled to mass spectrometry (TAP-MS) is one of the most advanced methods to characterize protein complexes in plants, giving a comprehensive view on the protein-protein interactions (PPIs) of a certain protein of interest (bait). The bait protein is fused to a double affinity tag, which consists of a protein G tag and a streptavidin-binding peptide separated by a very specific protease cleavage site, allowing highly specific protein complex isolation under near-physiological conditions. Implementation of this optimized TAP tag, combined with ultrasensitive MS, means that these experiments can be performed on small amounts (25 mg of total protein) of protein extracts from Arabidopsis cell suspension cultures. It is also possible to use this approach to isolate low abundant protein complexes from Arabidopsis seedlings, thus opening perspectives for the exploration of protein complexes in a plant developmental context. Next to protocols for efficient biomass generation of seedlings (7.5 months), we provide detailed protocols for TAP (1 d), and for sample preparation and liquid chromatography-tandem MS (LC-MS/MS; 5 d), either from Arabidopsis seedlings or from cell cultures. For the identification of specific co-purifying proteins, we use an extended protein database and filter against a list of nonspecific proteins on the basis of the occurrence of a co-purified protein among 543 TAP experiments. The value of the provided protocols is illustrated through numerous applications described in recent literature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Workflow of the TAP platform for Arabidopsis cell cultures and seedlings.
Figure 2: Schematic representation of the GSrhino tag fused to either the N or C terminus of the bait protein of interest.
Figure 3: SDS-PAGE analysis of TAP eluates, showing the high specificity and reproducibility of the GS-TAP protocol.
Figure 4: Overview of the different multisite Gateway cloning strategies for fusion of the GSrhino tag to the bait protein.
Figure 5: Schemes for the determination of nonspecific proteins and transcript expression breadth of the nonspecific gene list.

Similar content being viewed by others

References

  1. Braun, P., Aubourg, S., Van Leene, J., De Jaeger, G. & Lurin, C. Plant protein interactomes. Annu. Rev. Plant Biol. 64, 161–187 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Van Leene, J., Boruc, J., De Jaeger, G., Russinova, E. & De Veylder, L. A kaleidoscopic view of the Arabidopsiscore cell cycle interactome. Trends Plant Sci. 16, 141–150 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Arabidopsis Interactome Mapping Consortium. Evidence for network evolution in an Arabidopsis interactome map. Science 333, 601–607 (2011).

  4. Backstrom, S., Elfving, N., Nilsson, R., Wingsle, G. & Bjorklund, S. Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Mol. Cell 26, 717–729 (2007).

    Article  PubMed  CAS  Google Scholar 

  5. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Witte, C.P., Noel, L.D., Gielbert, J., Parker, J.E. & Romeis, T. Rapid one-step protein purification from plant material using the eight-amino acid StrepII epitope. Plant Mol. Biol. 55, 135–147 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Smaczniak, C. et al. Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues. Nat. Protoc. 7, 2144–2158 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Fröhlich, A. et al. Looking deep inside: detection of low-abundance proteins in leaf extracts of Arabidopsis and phloem exudates of pumpkin. Plant Physiol. 159, 902–914 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Van Leene, J., Witters, E., Inzé, D. & De Jaeger, G. Boosting tandem affinity purification of plant protein complexes. Trends Plant Sci. 13, 517–520 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Puig, O. et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218–229 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Kühner, S. et al. Proteome organization in a genome-reduced bacterium. Science 326, 1235–1240 (2009).

    Article  PubMed  CAS  Google Scholar 

  13. Gavin, A.-C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Krogan, N.J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Hutchins, J.R.A. et al. Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science 328, 593–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Butland, G. et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531–537 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Van Leene, J. et al. Isolation of transcription factor complexes from Arabidopsis cell suspension cultures by tandem affinity purification. Methods Mol. Biol. 754, 195–218 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Van Leene, J. et al. A tandem affinity purification-based technology platform to study the cell cycle interactome in Arabidopsis thaliana. Mol. Cell. Proteomics 6, 1226–1238 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi, N. et al. The DNA replication checkpoint aids survival of plants deficient in the novel replisome factor ETG1. EMBO J. 27, 1840–1851 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takahashi, N. et al. The MCM-binding protein ETG1 aids sister chromatid cohesion required for postreplicative homologous recombination repair. PLoS Genet. 6, e1000817 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Pauwels, L. et al. NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464, 788–791 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gadeyne, A. et al. The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants. Cell 156, 691–704 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Spinner, L. et al. A protein phosphatase 2A complex spatially controls plant cell division. Nat. Commun. 4, 1863 (2013).

    Article  PubMed  CAS  Google Scholar 

  24. Van Leene, J. et al. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol. Syst. Biol. 6, 397 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Eloy, N.B. et al. SAMBA, a plant-specific anaphase-promoting complex/cyclosome regulator is involved in early development and A-type cyclin stabilization. Proc. Natl. Acad. Sci. USA 109, 13853–13858 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heyman, J. et al. Arabidopsis ULTRAVIOLET-B-INSENSITIVE4 maintains cell division activity by temporal inhibition of the anaphase-promoting complex/cyclosome. Plant Cell 23, 4394–4410 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heyman, J. et al. ERF115 controls root quiescent center cell division and stem cell replenishment. Science 342, 860–863 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Bürckstümmer, T. et al. An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat. Methods 3, 1013–1019 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. Vercruyssen, L. et al. ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development. Plant Cell 26, 210–229 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lamesch, P. et al. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40, D1202–D1210 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Xu, X. et al. The tandem affinity purification method: an efficient system for protein complex purification and protein interaction identification. Protein Expr. Purif. 72, 149–156 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Li, Y. The tandem affinity purification technology: an overview. Biotechnol. Lett. 33, 1487–1499 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Kyriakakis, P., Tipping, M., Abed, L. & Veraksa, A. Tandem affinity purification in Drosophila—the advantages of the GS-TAP system. Fly 2, 229–235 (2008).

    Article  PubMed  Google Scholar 

  34. Ma, H. et al. A highly efficient multifunctional tandem affinity purification approach applicable to diverse organisms. Mol. Cell. Proteomics 11, 501–511 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Li, F. et al. Structure of the core editing complex (L-complex) involved in uridine insertion/deletion RNA editing in trypanosomatid mitochondria. Proc. Natl. Acad. Sci. USA 106, 12306–12310 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sundberg, M. et al. The heteromultimeric debranching enzyme involved in starch synthesis in Arabidopsis requires both isoamylase1 and isoamylase2 subunits for complex stability and activity. PLoS ONE 8, e75223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heijde, M. et al. Constitutively active UVR8 photoreceptor variant in Arabidopsis. Proc. Natl. Acad. Sci. USA 110, 20326–20331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Benhamed, M. et al. Genome-scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5. Plant J. 56, 493–504 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Domenichini, S. et al. Evidence for a role of Arabidopsis CDT1 proteins in gametophyte development and maintenance of genome integrity. Plant Cell 24, 2779–2791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Van Damme, D. et al. Adaptin-like protein TPLATE and clathrin recruitment during plant somatic cytokinesis occurs via two distinct pathways. Proc. Natl. Acad. Sci. USA 108, 615–620 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Boudolf, V. et al. CDKB1;1 forms a functional complex with CYCA2;3 to suppress endocycle onset. Plant Physiol. 150, 1482–1493 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Van Aken, O. et al. Mitochondrial type-I prohibitins of Arabidopsis thaliana are required for supporting proficient meristem development. Plant J. 52, 850–864 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Cromer, L. et al. Centromeric cohesion is protected twice at meiosis, by SHUGOSHINs at anaphase I and by PATRONUS at interkinesis. Curr. Biol. 23, 2090–2099 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Berckmans, B. et al. Auxin-dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins. Plant Cell 23, 3671–3683 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nelissen, H. et al. Plant Elongator regulates auxin-related genes during RNA polymerase II transcription elongation. Proc. Natl. Acad. Sci. USA 107, 1678–1683 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fernández-Calvo, P. et al. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23, 701–715 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Geerinck, J., Pauwels, L., De Jaeger, G. & Goossens, A. Dissection of the one-megaDalton JAZ1 protein complex. Plant Signal. Behav. 5, 1039–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Antoni, R. et al. PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol. 161, 931–941 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Di Rubbo, S. et al. The clathrin adaptor complex AP-2 mediates endocytosis of BRASSINOSTEROID INSENSITIVE1 in Arabidopsis. Plant Cell 25, 2986–2997 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sauer, M. et al. MTV1 and MTV4 encode plant-specific ENTH and ARF GAP proteins that mediate clathrin-dependent trafficking of vacuolar cargo from the trans-Golgi network. Plant Cell 25, 2217–2235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nodzyński, T. et al. Retromer subunits VPS35A and VPS29 mediate prevacuolar compartment (PVC) function in Arabidopsis. Mol. Plant 6, 1849–1862 (2013).

    Article  PubMed  CAS  Google Scholar 

  52. Bassard, J.-E. et al. Protein-protein and protein-membrane associations in the lignin pathway. Plant Cell 24, 4465–4482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Menges, M. & Murray, J.A.H. Synchronous Arabidopsissuspension cultures for analysis of cell-cycle gene activity. Plant J. 30, 203–212 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Verkest, A. et al. A generic tool for transcription factor target gene discovery in Arabidopsis cell suspension cultures based on tandem chromatin affinity purification. Plant Physiol. 164, 1122–1133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gibson, T.J., Seiler, M. & Veitia, R.A. The transience of transient overexpression. Nat. Methods 10, 715–721 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Facette, M.R., Shen, Z., Björnsdóttir, F.R., Briggs, S.P. & Smith, L.G. Parallel proteomic and phosphoproteomic analyses of successive stages of maize leaf development. Plant Cell 25, 2798–2812 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, G., Wu, W.W., Zhang, Z., Masilamani, S. & Shen, R.-F. Decoy methods for assessing false positives and false discovery rates in shotgun proteomics. Anal. Chem. 81, 146–159 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Van Bel, M. et al. Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol. 158, 590–600 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Carbon, S. et al. AmiGO: online access to ontology and annotation data. Bioinformatics 25, 288–289 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Pardo, M. & Choudhary, J.S. Assignment of protein interactions from affinity purification/mass spectrometry data. J. Proteome Res. 11, 1462–1474 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, X., Henriques, R., Lin, S.-S., Niu, Q.-W. & Chua, N.-H. Agrobacterium-mediated transformation of Arabidopsis thalianausing the floral dip method. Nat. Protoc. 1, 641–646 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Clough, S.J. & Bent, A.F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Hubner, N.C. et al. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J. Cell Biol. 189, 739–754 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Horiguchi, G., Kim, G.-T. & Tsukaya, H. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J. 43, 68–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. De Bodt, S., Hollunder, J., Nelissen, H., Meulemeester, N. & Inzé, D. CORNET 2.0: integrating plant coexpression, protein-protein interactions, regulatory interactions, gene associations and functional annotations. New Phytol. 195, 707–720 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.V.L. is a postdoctoral Fellow of the Research Foundation-Flanders. We thank S. Ghorbani for practical support; A. Staes and J. Vandenbussche for support with mass spectrometry; G. Gonnelli for help with data analysis; K. Verleye, J.V. Driessche and N. Helderwert for general support; and A. Bleys for help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.V.L., D.E. and G.D.J. designed the research. B.C., N.D.W., G.P., E.V.D.S., L.V. and J.V.L. performed experiments. D.E., J.V.L., K.V., L.M. and G.D.J. analyzed the data. K.G. and E.W. provided protocols for LC-MS/MS analysis. M.D., A.V., K.V., K.G., L.M. and E.W. commented on the manuscript. J.V.L., D.E. and G.D.J. wrote the manuscript.

Corresponding author

Correspondence to Geert De Jaeger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Distribution of the average Normalized Spectral Abundance Factors (NSAF) of non-specific proteins.

Non-specific proteins were grouped in subsets by the number of different baitgroups the non-specific proteins were identified in.

Supplementary Figure 2 Identification of two non-specific proteins as genuine interactions.

Identification of two Actin-related proteins as genuine interactions using AN3 as bait, either with TAP on cell culture or on seedlings. In all TAP experiments where ARP4 or ARP7 were identified, the difference was calculated between the NSAF in that sample and the minimal NSAF value of 0.4% for low abundant non-specific proteins (See Supplementary Fig. 1).

Supplementary Figure 3 Setup of the assembled IgG Sepharose Polyprep column during binding of the total protein extract onto the IgG beads.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Table 1 (PDF 703 kb)

Supplementary Table 2

Excel list of 760 nonspecific proteins, based on the occurrence of a co-purified protein among 543 TAP experiments using 115 different bait proteins, classified into 62 unrelated bait groups. In column three, the number of baitgroups in which a protein was identified, is shown. (XLS 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Leene, J., Eeckhout, D., Cannoot, B. et al. An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes. Nat Protoc 10, 169–187 (2015). https://doi.org/10.1038/nprot.2014.199

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.199

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing