Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Particle generation, functionalization and sortase A–mediated modification with targeting of single-chain antibodies for diagnostic and therapeutic use

Abstract

Antibody fusion to nonprotein materials such as contrast agents or radio-tracers, nano- or microparticles or small-molecule drugs is attracting major interest for molecular imaging and drug delivery. Nondirected bioconjugation techniques may impair antibody affinity, result in lower amounts of functional antibodies and generate multicomponent mixtures. We present a detailed protocol for the enzymatic bioconjugation of small recombinant antibodies to imaging particles, and we also describe the generation of and conjugation to a low-fouling capsule assembled for drug delivery from PEG and PVPON (poly(N-vinylpyrrolidone) by a layer-by-layer (LbL) technique. The single-chain variable fragment (scFv) is equipped with a short C-terminal LPETG tag and the fusion partners are functionalized with an N-terminal GGG nucleophilic group for sortase A conjugation. The LbL capsules are assembled through hydrogen bonding by depositing alkyne-modified poly(vinylpyrrolidone) and poly(methacrylic acid) layers on silica particles, followed by depositing alkyne-modified PEG. The generation of the antibodies and LbL capsules takes 1–2 weeks each. The conjugation and functional testing takes another 3–4 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the conjugation process between scFv-LPETG and the GGG-coupling partner (probe).
Figure 2: Generation and specific binding evaluation of scFv-coupled iron oxide particles to platelet aggregates in a flow chamber system.
Figure 3: Generation of sortase A–mediated scFv-functionalized LbL capsules.
Figure 4: Targeting of sortase A–mediated scFv-functionalized LbL capsules to platelet-rich thrombi.

Similar content being viewed by others

References

  1. Kim, B.Y.S., Rutka, J.T. & Chan, W.C.W. Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010).

    CAS  PubMed  Google Scholar 

  2. Hermanson, G.T. Bioconjugate Techniques. Elsevier, 2008.

  3. Popp, M.W.-L. & Ploegh, H.L. Making and breaking peptide bonds: protein engineering using sortase. Angew. Chem. Int. Ed. Engl. 50, 5024–5032 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Popp, M.W.-L., Antos, J.M. & Ploegh, H.L. Site-specific protein labeling via sortase-mediated transpeptidation. Curr. Protoc. Protein Sci. 56, 15.3.1–15.3.9 (2009).

    Article  Google Scholar 

  5. Popp, M.W., Antos, J.M., Grotenbreg, G.M., Spooner, E. & Ploegh, H.L. Sortagging: a versatile method for protein labeling. Nat. Chem. Biol. 3, 707–708 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Witte, M.D. et al. Preparation of unnatural N-to-N and C-to-C protein fusions. Proc. Natl. Acad. Sci. USA 109, 11993–11998 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Witte, M.D. et al. Production of unnaturally linked chimeric proteins using a combination of sortase-catalyzed transpeptidation and click chemistry. Nat. Protoc. 8, 1808–1819 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Theile, C.S. et al. Site-specific N-terminal labeling of proteins using sortase-mediated reactions. Nat. Protoc. 8, 1800–1807 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Guimaraes, C.P. et al. Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions. Nat. Protoc. 8, 1787–1799 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ta, H.T. et al. Enzymatic single-chain antibody tagging: a universal approach to targeted molecular imaging and cell homing in cardiovascular disease. Circ. Res. 109, 365–373 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Leung, M.K.M. et al. Bio-click chemistry: enzymatic functionalization of PEGylated capsules for targeting applications. Angew. Chem. Int. Ed. Engl. 51, 7132–7136 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, X. et al. Novel single-chain antibody-targeted microbubbles for molecular ultrasound imaging of thrombosis: validation of a unique noninvasive method for rapid and sensitive detection of thrombi and monitoring of success or failure of thrombolysis in mice. Circulation 125, 3117–3126 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Schneewind, O., Model, P. & Fischetti, V.A. Sorting of protein A to the staphylococcal cell wall. Cell 70, 267–281 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Marraffini, L.A. & Schneewind, O. Anchor structure of staphylococcal surface proteins. V. Anchor structure of the sortase B substrate IsdC. J. Biol. Chem. 280, 16263–16271 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Chan, L. et al. Covalent attachment of proteins to solid supports and surfaces via sortase-mediated ligation. PLoS ONE 2, e1164 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Huang, X. et al. Kinetic mechanism of Staphylococcus aureus sortase SrtA. Biochemistry 42, 11307–11315 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Hagemeyer, C.E. & Peter, K. Targeting the platelet integrin GPIIb/IIIa. Curr. Pharm. Des. 16, 4119–4133 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Armstrong, P.C. & Peter, K. GPIIb/IIIa inhibitors: from bench to bedside and back to bench again. Thromb. Haemost. 107, 808–814 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Gawaz, M., Langer, H. & May, A.E. Platelets in inflammation and atherogenesis. J. Clin. Invest. 115, 3378–3384 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. May, A.E., Seizer, P. & Gawaz, M. Platelets: inflammatory firebugs of vascular walls. Arterioscler. Thromb. Vasc. Biol. 28, s5–s10 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Stoll, P. et al. Targeting ligand-induced binding sites on GPIIb/IIIa via single-chain antibody allows effective anticoagulation without bleeding time prolongation. Arterioscler. Thromb. Vasc. Biol. 27, 1206–1212 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Schwarz, M. et al. Reversibility versus persistence of GPIIb/IIIa blocker-induced conformational change of GPIIb/IIIa (αIIbβ3, CD41/CD61). J. Pharmacol. Exp. Ther. 308, 1002–1011 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Schwarz, M. et al. Conformation-specific blockade of the integrin GPIIb/IIIa: a novel antiplatelet strategy that selectively targets activated platelets. Circ. Res. 99, 25–33 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Schwarz, M. et al. Single-chain antibodies for the conformation-specific blockade of activated platelet integrin αIIbβ3 designed by subtractive selection from naive human phage libraries. FASEB J. 18, 1704–1706 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Cai, J.-M. et al. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation 106, 1368–1373 (2002).

    Article  PubMed  Google Scholar 

  26. Toussaint, J.F., LaMuraglia, G.M., Southern, J.F., Fuster, V. & Kantor, H.L. Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 94, 932–938 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Larose, E. et al. Improved characterization of atherosclerotic plaques by gadolinium contrast during intravascular magnetic resonance imaging of human arteries. Atherosclerosis 196, 919–925 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Choudhury, R.P., Fuster, V. & Fayad, Z.A. Molecular, cellular and functional imaging of atherothrombosis. Nat. Rev. Drug Discov. 3, 913–925 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Sosnovik, D.E., Nahrendorf, M. & Weissleder, R. Molecular magnetic resonance imaging in cardiovascular medicine. Circulation 115, 2076–2086 (2007).

    Article  PubMed  Google Scholar 

  30. Johansson, L.O., Bjørnerud, A., Ahlström, H.K., Ladd, D.L. & Fujii, D.K. A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution. J. Magn. Reson. Imaging 13, 615–618 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Grieve, S.M. et al. Cardiac magnetic resonance imaging of rapid VCAM-1 up-regulation in myocardial ischemia-reperfusion injury. Eur. Biophys. J. 42, 61–70 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. von zur Muhlen, C. et al. A contrast agent recognizing activated platelets reveals murine cerebral malaria pathology undetectable by conventional MRI. J. Clin. Invest. 118, 1198–1207 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. von zur Muhlen, C. et al. Magnetic resonance imaging contrast agent targeted toward activated platelets allows in vivo detection of thrombosis and monitoring of thrombolysis. Circulation 118, 258–267 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Such, G.K., Johnston, A.P.R. & Caruso, F. Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chem. Soc. Rev. 40, 19–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. De Koker, S., Hoogenboom, R. & De Geest, B.G. Polymeric multilayer capsules for drug delivery. Chem. Soc. Rev. 41, 2867–2884 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Boyer, C., Huang, X., Whittaker, M.R., Bulmus, V. & Davis, T.P. An overview of protein–polymer particles. Soft Matter 7, 1599–1614 (2011).

    Article  CAS  Google Scholar 

  37. Caruso, F., Caruso, R. & Mohwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282, 1111–1114 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Cabral, H. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 6, 815–823 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Liang, K.K. et al. Charge-shifting click capsules with dual-responsive cargo release mechanisms. Adv. Mater 23, H273–H277 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Poon, Z., Chang, D., Zhao, X. & Hammond, P.T. Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia. ACS Nano 5, 4284–4292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shimoni, O., Yan, Y., Wang, Y. & Caruso, F. Shape-dependent cellular processing of polyelectrolyte capsules. ACS Nano 7, 522–530 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Kinnane, C.R. et al. Low-fouling poly(N-vinyl pyrrolidone) capsules with engineered degradable properties. Biomacromolecules 10, 2839–2846 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Kolb, H.C., Finn, M.G. & Sharpless, K.B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004–2021 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Rostovtsev, V.V., Green, L.G., Fokin, V.V. & Sharpless, K.B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective 'ligation' of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 41, 2596–2599 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Beckett, D., Kovaleva, E. & Schatz, P.J. A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci. 8, 921–929 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, I., Howarth, M., Lin, W. & Ting, A.Y. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat. Methods 2, 99–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Sung, K., Maloney, M.T., Yang, J. & Wu, C. A novel method for producing mono-biotinylated, biologically active neurotrophic factors: an essential reagent for single molecule study of axonal transport. J. Neurosci. Methods 200, 121–128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tannous, B.A. et al. Metabolic biotinylation of cell surface receptors for in vivo imaging. Nat. Methods 3, 391–396 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Howarth, M. & Ting, A.Y. Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin. Nat. Protoc. 3, 534–545 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin, C.-W. & Ting, A.Y. Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells. J. Am. Chem. Soc. 128, 4542–4543 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Taki, M., Shiota, M. & Taira, K. Transglutaminase-mediated N- and C-terminal fluorescein labeling of a protein can support the native activity of the modified protein. Protein Eng. Des. Sel. 17, 119–126 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Hu, B.-H. & Messersmith, P.B. Rational design of transglutaminase substrate peptides for rapid enzymatic formation of hydrogels. J. Am. Chem. Soc. 125, 14298–14299 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Takazawa, T., Kamiya, N., Ueda, H. & Nagamune, T. Enzymatic labeling of a single chain variable fragment of an antibody with alkaline phosphatase by microbial transglutaminase. Biotechnol. Bioeng. 86, 399–404 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Besheer, A., Hertel, T.C., Kressler, J., Mäder, K. & Pietzsch, M. Enzymatically catalyzed conjugation of a biodegradable polymer to proteins and small molecules using microbial transglutaminase. Methods Mol. Biol. 751, 17–27 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Ton-That, H., Liu, G., Mazmanian, S.K., Faull, K.F. & Schneewind, O. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc. Natl. Acad. Sci. USA 96, 12424–12429 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Clow, F., Fraser, J.D. & Proft, T. Immobilization of proteins to biacore sensor chips using Staphylococcus aureus sortase A. Biotechnol. Lett. 30, 1603–1607 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Chen, I., Dorr, B.M. & Liu, D.R. A general strategy for the evolution of bond-forming enzymes using yeast display. Proc. Natl. Acad. Sci. USA 108, 11399–11404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, S. & Proft, T. The use of sortase-mediated ligation for the immobilisation of bacterial adhesins onto fluorescence-labelled microspheres: a novel approach to analyse bacterial adhesion to host cells. Biotechnol. Lett. 32, 1713–1718 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Health and Medical Research Council (grant nos. 472665, 472667 and 487922), the National Heart Foundation (grant no. G09M4345) and an Australian Research Council (ARC) Discovery Project (DP0877360). The work was supported in part by the Victorian Government's Operational Infrastructure Support Program. C.E.H. is supported by a National Heart Foundation Career Development Fellowship (CR 11M 6066), K.A. is supported by the German Research Foundation (Al 1521/1-1), A.P.R.J. is supported by an ARC Future Fellowship (FT110100265), H.T.T. is supported by a National Heart Foundation Postdoctoral Fellowship (PF09M4688), M.K.M.L. is supported by an ARC Australian Postgraduate Award, F.C. is supported by an ARC Federation Fellowship (FF0776078) and K.P. is supported by an ARC Future Fellowship (FT0992210). We thank G. Krippner for his help with Figure 1.

Author information

Authors and Affiliations

Authors

Contributions

C.E.H. designed and produced the antibodies, supervised the work and oversaw preparation of the manuscript; K.A. prepared the manuscript and made the figures; A.P.R.J. generated the nanocapsules and supervised the LbL capsule work; G.K.S. made the polymers for the nanocapsules; H.T.T. performed the MPIO; M.K.M.L. performed the nanocapsule and thrombus-targeting work; S.P. established sortase A–mediated scFv conjugation; X.W. cloned and produced scFv antibodies; F.C. supervised the nanocapsule work; K.P. generated the scFvs and supervised the MPIO work. All authors contributed to writing of the manuscript and approved the final version.

Corresponding author

Correspondence to Christoph E Hagemeyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagemeyer, C., Alt, K., Johnston, A. et al. Particle generation, functionalization and sortase A–mediated modification with targeting of single-chain antibodies for diagnostic and therapeutic use. Nat Protoc 10, 90–105 (2015). https://doi.org/10.1038/nprot.2014.177

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.177

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research