Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Genome editing in rice and wheat using the CRISPR/Cas system

Abstract

Targeted genome editing nucleases, such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), are powerful tools for understanding gene function and for developing valuable new traits in plants. The clustered regularly interspersed short palindromic repeats (CRISPR)/Cas system has recently emerged as an alternative nuclease-based method for efficient and versatile genome engineering. In this system, only the 20-nt targeting sequence within the single-guide RNA (sgRNA) needs to be changed to target different genes. The simplicity of the cloning strategy and the few limitations on potential target sites make the CRISPR/Cas system very appealing. Here we describe a stepwise protocol for the selection of target sites, as well as the design, construction, verification and use of sgRNAs for sequence-specific CRISPR/Cas-mediated mutagenesis and gene targeting in rice and wheat. The CRISPR/Cas system provides a straightforward method for rapid gene targeting within 1–2 weeks in protoplasts, and mutated rice plants can be generated within 13–17 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic description of RNA-guided genome editing using the CRISPR/Cas system.
Figure 2: Timeline for the construction and expression of sgRNAs and Cas9.
Figure 3: Overview of the experiments.
Figure 4: Anticipated results for CRISPR/Cas-induced mutations.
Figure 5: Anticipated results for HDR-mediated genome modification in rice protoplasts.

Similar content being viewed by others

References

  1. Carroll, D. Genome engineering with zinc-finger nucleases. Genetics 188, 773–782 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sander, J.D. et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat. Methods 8, 67–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Miller, J.C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25, 778–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Bogdanove, A.J. & Voytas, D.F. TAL effectors: customizable proteins for DNA targeting. Science 333, 1843–1846 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Streubel, J., Blucher, C., Landgraf, A. & Boch, J. TAL effector RVD specificities and efficiencies. Nat. Biotechnol. 30, 593–595 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, K. & Gao, C. TALENs: customizable molecular DNA scissors for genome engineering of plants. J. Genet. Genomics 40, 271–279 (2013).

    Article  PubMed  Google Scholar 

  8. Voytas, D.F. Plant genome engineering with sequence-specific nucleases. Annu. Rev. Plant Biol. 64, 327–350 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Shukla, V.K. et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459, 437–441 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Townsend, J.A. et al. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459, 442–445 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, F. et al. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc. Natl. Acad. Sci. 107, 12028–12033 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, T. et al. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 30, 390–392 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Shan, Q. et al. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol. Plant 6, 1365–1368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, Y. et al. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol. 161, 20–27 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Wendt, T. et al. TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol. Biol. 83, 279–285 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liang, Z., Zhang, K., Chen, K. & Gao, C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genomics 41, 63–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Symington, L.S. & Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet 45, 247–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Hwang, W.Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chang, N. et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. 23, 465–472 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shan, Q. et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31, 686–688 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Jiang, W. et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic acids Res. 41, e188 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nekrasov, V. et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691–693 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Li, J.-F. et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31, 688–691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xie, K. & Yang, Y. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol. Plant 6, 1975–1983 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Miao, J. et al. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 23, 1233–1236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Feng, Z. et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 23, 1229–1232 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Upadhyay, S.K., Kumar, J., Alok, A. & Tuli, R. RNA guided genome editing for target gene mutations in wheat. G3 (Bethesda) 3, 2233–2238 (2013).

    Article  CAS  Google Scholar 

  32. Jiang, W. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. DiCarlo, J.E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41, 4336–4343 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Friedland, A.E. et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat. Methods 10, 741–743 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bassett, A.R., Tibbit, C., Ponting, C.P. & Liu, J.-L. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 4, 220–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, D. et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat. Biotechnol. 31, 681–683 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Sorek, R., Lawrence, C.M. & Wiedenheft, B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem. 82, 237–266 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Terns, M.P. & Terns, R.M. CRISPR-based adaptive immune systems. Curr. Opin. Microbiol. 14, 321–327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sampson, T.R. et al. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497, 254–257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sinkunas, T. et al. In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO J. 32, 385–394 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Niewoehner, O., Jinek, M. & Doudna, J.A. Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases. Nucleic acids Res. 1–13 (2013).

  42. Wiedenheft, B., Samuel, S.H. & Doudna, J.A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 311 (2012).

    Article  Google Scholar 

  43. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. 109, E2579–E2586 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Urnov, F.D. et al. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hsu, P.D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31, 839–843 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xie, K., Zhang, J. & Yang, Y. Genome-wide prediction of highly specific guide RNA spacers for the CRISPR-Cas9 mediated genome editing in model plants and major crops. Mol. Plant 7, 923–926 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Xiao, A. et al. CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30, 1180–1182 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Bedell, V.M. et al. In vivo genome editing using a high-efficiency TALEN system. Nature 491, 114–118 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ran, F.A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Strouse, B. et al. Combinatorial gene editing in mammalian cells using ssODNs and TALENs. Sci. Rep. 4, 3791 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen, L., Zhang, S., Beachy, R.N. & Fauquet, C.M. A protocol for consistent, large-scale production of fertile transgenic rice plants. Plant Cell Rep. 18, 25–31 (1998).

    Article  Google Scholar 

  54. Zhang, Y. et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7, 30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Gao laboratory for their support. This work was funded by grants from the National Natural Science Foundation of China (no. 31271795) and the Ministry of Agriculture of China (nos. 2014ZX0801003B, 2013ZX08002-004, 2013ZX08002-005 and 2013ZX08010-002).

Author information

Authors and Affiliations

Authors

Contributions

Q.S., Y.W., J.L. and C.G. wrote the manuscript. Q.S., Y.W. and J.L. performed the experiments. C.G. supervised the research.

Corresponding author

Correspondence to Caixia Gao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Tables 1–4 and Supplementary Notes 1–4 (PDF 334 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, Q., Wang, Y., Li, J. et al. Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9, 2395–2410 (2014). https://doi.org/10.1038/nprot.2014.157

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.157

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing