Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography

Abstract

We have recently established a procedure for serial femtosecond crystallography (SFX) in lipidic cubic phase (LCP) for protein structure determination at X-ray free-electron lasers (XFELs). LCP-SFX uses the gel-like LCP as a matrix for growth and delivery of membrane protein microcrystals for crystallographic data collection. LCP is a liquid-crystalline mesophase composed of lipids and water. It provides a membrane-mimicking environment that stabilizes membrane proteins and supports their crystallization. Here we describe detailed procedures for the preparation and characterization of microcrystals for LCP-SFX applications. The advantages of LCP-SFX over traditional crystallographic methods include the capability of collecting room-temperature high-resolution data with minimal effects of radiation damage from sub-10-μm crystals of membrane and soluble proteins that are difficult to crystallize, while eliminating the need for crystal harvesting and cryo-cooling. Compared with SFX methods for microcrystals in solution using liquid injectors, LCP-SFX reduces protein consumption by 2–3 orders of magnitude for data collection at currently available XFELs. The whole procedure typically takes 3–5 d, including the time required for the crystals to grow.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of an LCP-SFX experiment at LCLS.
Figure 2: Flowchart of sample preparation for LCP-SFX.
Figure 3: Phase behavior of MAG lipids.
Figure 4: Crystallization setup in syringes.
Figure 5: Microcrystals of serotonin 5-HT2B receptor in LCP captured with different imaging profiles.
Figure 6: Crystal density estimation.
Figure 7: Representative results, obtained with 5-HT2B/ergotamine.
Figure 8: Representative results, obtained with SMO/cyclopamine.

Similar content being viewed by others

References

  1. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).

    Article  CAS  Google Scholar 

  2. Chapman, H.N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).

    Article  CAS  Google Scholar 

  3. Spence, J.C., Weierstall, U. & Chapman, H.N. X-ray lasers for structural and dynamic biology. Rep. Prog. Phys. 75, 102601 (2012).

    Article  CAS  Google Scholar 

  4. White, T.A. et al. Crystallographic data processing for free-electron laser sources. Acta Crystallogr. D Biol. Crystallogr. 69, 1231–1240 (2013).

    Article  CAS  Google Scholar 

  5. DePonte, D.P. et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D Appl. Phys. 41, 195505 (2008).

    Article  Google Scholar 

  6. Lomb, L. et al. An anti-settling sample delivery instrument for serial femtosecond crystallography. J. Appl. Cryst. 45, 674–678 (2012).

    Article  CAS  Google Scholar 

  7. Johansson, L.C. et al. Lipidic phase membrane protein serial femtosecond crystallography. Nat. Methods 9, 263–265 (2012).

    Article  CAS  Google Scholar 

  8. Boutet, S. et al. High-resolution protein structure determination by serial femtosecond crystallography. Science 337, 362–364 (2012).

    Article  CAS  Google Scholar 

  9. Redecke, L. et al. Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser. Science 339, 227–230 (2013).

    Article  CAS  Google Scholar 

  10. Johansson, L.C. et al. Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography. Nat. Commun. 4, 2911 (2013).

    Article  Google Scholar 

  11. Kern, J. et al. Room temperature femtosecond X-ray diffraction of photosystem II microcrystals. Proc. Natl. Acad. Sci. USA 109, 9721–9726 (2012).

    Article  CAS  Google Scholar 

  12. Sierra, R.G. et al. Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallogr. D Biol. Crystallogr. 68, 1584–1587 (2012).

    Article  CAS  Google Scholar 

  13. Weierstall, U. et al. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun. 5, 3309 (2014).

    Article  Google Scholar 

  14. Larsson, K. Cubic lipid-water phases: structures and biomembrane aspects. J. Phys. Chem. 93, 7304–7314 (1989).

    Article  CAS  Google Scholar 

  15. Cherezov, V. Lipidic cubic phase technologies for membrane protein structural studies. Curr. Opin. Struct. Biol. 21, 559–566 (2011).

    Article  CAS  Google Scholar 

  16. Landau, E.M. & Rosenbusch, J.P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci. USA 93, 14532–14535 (1996).

    Article  CAS  Google Scholar 

  17. Liu, W. et al. Serial femtosecond crystallography of G protein-coupled receptors. Science 342, 1521–1524 (2013).

    Article  CAS  Google Scholar 

  18. Zarrine-Afsar, A. et al. Crystallography on a chip. Acta Crystallogr. D Biol. Crystallogr. 68, 321–323 (2012).

    Article  CAS  Google Scholar 

  19. Frank, M. et al. Femtosecond X-ray diffraction from two-dimensional protein crystals. IUCrJ 1, 95–100 (2014).

    Article  CAS  Google Scholar 

  20. Gati, C. et al. Serial crystallography on in vivo-grown microcrystals using synchrotron radiation. IUCrJ 1, 87–94 (2014).

    Article  CAS  Google Scholar 

  21. Kimura, T. et al. Imaging live cell in micro-liquid enclosure by X-ray laser diffraction. Nat. Commun. 5, 3052 (2014).

    Article  Google Scholar 

  22. Cherezov, V., Peddi, A., Muthusubramaniam, L., Zheng, Y.F. & Caffrey, M. A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases. Acta Crystallogr. D Biol. Crystallogr. 60, 1795–1807 (2004).

    Article  Google Scholar 

  23. Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 4, 706–731 (2009).

    Article  CAS  Google Scholar 

  24. Liu, W. & Cherezov, V. Crystallization of membrane proteins in lipidic mesophases. J. Vis. Exp. 49, e2501 (2011).

    Google Scholar 

  25. Li, D., Boland, C., Walsh, K. & Caffrey, M. Use of a robot for high-throughput crystallization of membrane proteins in lipidic mesophases. J. Vis. Exp. 67, e4000 (2012).

    Google Scholar 

  26. Kulkarni, C.V., Wachter, W., Iglesias-Salto, G., Engelskirchen, S. & Ahualli, S. Monoolein: a magic lipid? Phys. Chem. Chem. Phys. 13, 3004–3021 (2011).

    Article  CAS  Google Scholar 

  27. Li, D., Shah, S.T. & Caffrey, M. Host lipid and temperature as important screening variables for crystallizing integral membrane proteins in lipidic mesophases. Trials with diacylglycerol kinase. Cryst. Growth Des. 13, 2846–2857 (2013).

    Article  CAS  Google Scholar 

  28. Li, D. et al. Crystallizing membrane proteins in the lipidic mesophase. Experience with human prostaglandin E2 synthase 1 and an evolving strategy. Cryst. Growth Des. 14, 2034–2047 (2014).

    Article  CAS  Google Scholar 

  29. Cherezov, V., Clogston, J., Misquitta, Y., Abdel-Gawad, W. & Caffrey, M. Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase. Biophys. J. 83, 3393–3407 (2002).

    Article  CAS  Google Scholar 

  30. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  Google Scholar 

  31. Qiu, H. & Caffrey, M. Lyotropic and thermotropic phase behavior of hydrated monoacylglycerols: structure characterization of monovaccenin. J. Phys. Chem. B 102, 4819–4829 (1998).

    Article  CAS  Google Scholar 

  32. Qiu, H. & Caffrey, M. The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials 21, 223–234 (2000).

    Article  CAS  Google Scholar 

  33. Misquitta, L.V. et al. Membrane protein crystallization in lipidic mesophases with tailored bilayers. Structure 12, 2113–2124 (2004).

    Article  CAS  Google Scholar 

  34. Misquitta, Y. et al. Rational design of lipid for membrane protein crystallization. J. Struct. Biol. 148, 169–175 (2004).

    Article  CAS  Google Scholar 

  35. Cherezov, V., Fersi, H. & Caffrey, M. Crystallization screens: compatibility with the lipidic cubic phase for in meso crystallization of membrane proteins. Biophys. J. 81, 225–242 (2001).

    Article  CAS  Google Scholar 

  36. Joseph, J.S. et al. Characterization of lipid matrices for membrane protein crystallization by high-throughput small angle X-ray scattering. Methods 55, 342–349 (2011).

    Article  CAS  Google Scholar 

  37. van 't Hag, L. et al. In meso crystallization: compatibility of different lipid bicontinuous cubic mesophases with the cubic crystallization screen in aqueous solution. Cryst. Growth Des. 14, 1771–1781 (2014).

    Article  CAS  Google Scholar 

  38. Landau, E.M., Rummel, G., Cowan-Jacob, S.W. & Rosenbusch, J.P. Crystallization of a polar protein and small molecules from the aqueous compartment of lipidic cubic phases. J. Phys. Chem. B 101, 1935–1937 (1997).

    Article  CAS  Google Scholar 

  39. Caffrey, M. A lipid's eye view of membrane protein crystallization in mesophases. Curr. Opin. Struct. Biol. 10, 486–497 (2000).

    Article  CAS  Google Scholar 

  40. Cherezov, V., Clogston, J., Papiz, M.Z. & Caffrey, M. Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J. Mol. Biol. 357, 1605–1618 (2006).

    Article  CAS  Google Scholar 

  41. Wadsten, P. et al. Lipidic sponge phase crystallization of membrane proteins. J. Mol. Biol. 364, 44–53 (2006).

    Article  CAS  Google Scholar 

  42. Owen, R.L. et al. Outrunning free radicals in room-temperature macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 68, 810–818 (2012).

    Article  CAS  Google Scholar 

  43. Wacker, D. et al. Structural features for functional selectivity at serotonin receptors. Science 340, 615–619 (2013).

    Article  CAS  Google Scholar 

  44. Xu, F., Liu, W., Hanson, M.A., Stevens, R.C. & Cherezov, V. Development of an automated high throughput LCP-FRAP assay to guide membrane protein crystallization in lipid mesophases. Cryst. Growth Des. 11, 1193–1201 (2011).

    Article  CAS  Google Scholar 

  45. Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000).

    Article  CAS  Google Scholar 

  46. Liu, W. Membrane Protein Crystallization in the Lipidic Cubic Phase: Testing Hypotheses Relating to Reconstitution PhD thesis, (The Ohio State University, 2007).

Download references

Acknowledgements

This work was supported by the US National Institutes of Health grant nos. P50 GM073197 and U54 GM094618. We thank K. Kadyshevskaya for assistance with figure preparation, L. Johansson for comments and A. Walker for assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

W.L. and A.I. worked out the protocols and wrote the initial draft, and V.C. developed the concept and wrote the manuscript.

Corresponding author

Correspondence to Vadim Cherezov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Ishchenko, A. & Cherezov, V. Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography. Nat Protoc 9, 2123–2134 (2014). https://doi.org/10.1038/nprot.2014.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.141

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing