Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome-wide identification of transcript start and end sites by transcript isoform sequencing

Abstract

Hundreds of transcript isoforms with varying boundaries and alternative regulatory signals are transcribed from the genome, even in a genetically homogeneous population of cells. To study this transcriptional heterogeneity, we developed transcript isoform sequencing (TIF-seq), a method that allows the genome-wide profiling of full-length transcript isoforms defined by their exact 5′ and 3′ boundaries. TIF-seq entails the generation of full-length cDNA libraries, followed by their circularization and the sequencing of the junction fragments spanning the 5′ and 3′ transcript ends. By determining the respective co-occurrence of start and end sites of individual transcript molecules, TIF-seq can distinguish variations that conventional approaches for mapping single ends cannot, such as short abortive transcripts, bicistronic messages and overlapping transcripts that differ in lengths. The TIF-seq protocol we describe here can be applied to any eukaryotic organism (e.g., yeast, human), and it requires 6–10 d for generating TIF-seq libraries, 10 d for sequencing and 2–3 d for analysis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Detailed experimental workflow of TIF-seq.
Figure 2: TIF-seq quality controls and anticipated results.
Figure 3: Gel size-selection of long full-length cDNA.

References

  1. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).

    CAS  Article  Google Scholar 

  2. Di Giammartino, D.C., Nishida, K. & Manley, J.L. Mechanisms and consequences of alternative polyadenylation. Mol. Cell 43, 853–866 (2011).

    CAS  Article  Google Scholar 

  3. Gupta, I. et al. Alternative polyadenylation diversifies post-transcriptional regulation by selective RNA-protein interactions. Mol. Syst. Biol. 10, 719 (2014).

    Article  Google Scholar 

  4. Kelemen, O. et al. Function of alternative splicing. Gene 514, 1–30 (2013).

    CAS  Article  Google Scholar 

  5. Xu, Z. et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–1037 (2009).

    CAS  Article  Google Scholar 

  6. Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349 (2008).

    CAS  Article  Google Scholar 

  7. Wei, W., Pelechano, V., Jarvelin, A.I. & Steinmetz, L.M. Functional consequences of bidirectional promoters. Trends Genet. 27, 267–276 (2011).

    CAS  Article  Google Scholar 

  8. Jacquier, A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat. Rev. Genet. 10, 833–844 (2009).

    CAS  Article  Google Scholar 

  9. Carninci, P. et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet. 38, 626–635 (2006).

    CAS  Article  Google Scholar 

  10. Zhang, Z. & Dietrich, F.S. Mapping of transcription start sites in Saccharomyces cerevisiae using 5′ SAGE. Nucleic Acids Res. 33, 2838–2851 (2005).

    CAS  Article  Google Scholar 

  11. Ozsolak, F. et al. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 143, 1018–1029 (2010).

    CAS  Article  Google Scholar 

  12. Moqtaderi, Z., Geisberg, J.V., Jin, Y., Fan, X. & Struhl, K. Species-specific factors mediate extensive heterogeneity of mRNA 3′ ends in yeasts. Proc. Natl. Acad. Sci. USA 110, 11073–11078 (2013).

    CAS  Article  Google Scholar 

  13. Wilkening, S. et al. An efficient method for genome-wide polyadenylation site mapping and RNA quantification. Nucleic Acids Res. 41, e65 (2012).

    Article  Google Scholar 

  14. Pelechano, V., Wilkening, S., Jarvelin, A.I., Tekkedil, M.M. & Steinmetz, L.M. Genome-wide polyadenylation site mapping. Methods in Enzymology 513, 271–296 (2012).

    CAS  Article  Google Scholar 

  15. Pelechano, V., Wei, W. & Steinmetz, L.M. Extensive transcriptional heterogeneity revealed by isoform profiling. Nature 497, 127–131 (2013).

    CAS  Article  Google Scholar 

  16. Ng, P. et al. Multiplex sequencing of paired-end ditags (MS-PET): a strategy for the ultra-high-throughput analysis of transcriptomes and genomes. Nucleic Acids Res. 34, e84 (2006).

    Article  Google Scholar 

  17. Ng, P. et al. Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nat. Methods 2, 105–111 (2005).

    CAS  Article  Google Scholar 

  18. Fullwood, M.J. et al. An oestrogen receptor-α–bound human chromatin interactome. Nature 462, 58–64 (2009).

    CAS  Article  Google Scholar 

  19. Ruan, X. & Ruan, Y. Genome wide full-length transcript analysis using 5′ and 3′ paired-end-tag next generation sequencing (RNA-PET). Methods Mol. Biol. 809, 535–562 (2012).

    CAS  Article  Google Scholar 

  20. Carninci, P. et al. High-efficiency full-length cDNA cloning by biotinylated CAP trapper. Genomics 37, 327–336 (1996).

    CAS  Article  Google Scholar 

  21. Zhu, Y.Y., Machleder, E.M., Chenchik, A., Li, R. & Siebert, P.D. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. BioTechniques 30, 892–897 (2001).

    CAS  Article  Google Scholar 

  22. Maruyama, K. & Sugano, S. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171–174 (1994).

    CAS  Article  Google Scholar 

  23. Scotto-Lavino, E., Du, G. & Frohman, M.A. Amplification of 5′ end cDNA with 'new RACE'. Nat. Protoc. 1, 3056–3061 (2006).

    CAS  Article  Google Scholar 

  24. Carninci, P. Constructing the landscape of the mammalian transcriptome. J. Exp. Biol. 210, 1497–1506 (2007).

    CAS  Article  Google Scholar 

  25. Kuai, L., Fang, F., Butler, J.S. & Sherman, F. Polyadenylation of rRNA in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101, 8581–8586 (2004).

    CAS  Article  Google Scholar 

  26. Van Nieuwerburgh, F. et al. Quantitative bias in Illumina TruSeq and a novel post amplification barcoding strategy for multiplexed DNA and small RNA deep sequencing. PLoS ONE 6, e26969 (2011).

    CAS  Article  Google Scholar 

  27. Chen, Y. et al. Systematic evaluation of factors influencing ChIP-seq fidelity. Nat. Methods 9, 609–614 (2012).

    CAS  Article  Google Scholar 

  28. Miura, F. et al. A large-scale full-length cDNA analysis to explore the budding yeast transcriptome. Proc. Natl. Acad. Sci. USA 103, 17846–17851 (2006).

    CAS  Article  Google Scholar 

  29. Sharon, D., Tilgner, H., Grubert, F. & Snyder, M. A single-molecule long-read survey of the human transcriptome. Nat. Biotechnol. 31, 1009–1014 (2013).

    CAS  Article  Google Scholar 

  30. McManus, C.J., Duff, M.O., Eipper-Mains, J. & Graveley, B.R. Global analysis of trans-splicing in Drosophila. Proc. Natl. Acad. Sci. USA 107, 12975–12979 (2010).

    CAS  Article  Google Scholar 

  31. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    CAS  Article  Google Scholar 

  32. Wilkening, S. et al. Genotyping 1000 yeast strains by next-generation sequencing. BMC Genomics 14, 90 (2013).

    CAS  Article  Google Scholar 

  33. Thorvaldsdottir, H., Robinson, J.T. & Mesirov, J.P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank R. Aiyar for help in editing and refining the manuscript; A.I. Järvelin, J. Zaugg and S. Clauder-Münster for help in optimizing the TIF-seq protocol; and the members of the Steinmetz laboratory for helpful discussions and critical comments. This study was technically supported by the EMBL Genomics Core Facility. This study was financially supported by the US National Institutes of Health and the EMBL (to L.M.S.).

Author information

Authors and Affiliations

Authors

Contributions

W.W., V.P. and L.M.S. conceived the project; V.P. developed the TIF-seq method; P.J. contributed to further method optimization; W.W. and V.P. performed data analysis; and L.M.S. supervised the study. All authors wrote the manuscript.

Corresponding author

Correspondence to Lars M Steinmetz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pelechano, V., Wei, W., Jakob, P. et al. Genome-wide identification of transcript start and end sites by transcript isoform sequencing. Nat Protoc 9, 1740–1759 (2014). https://doi.org/10.1038/nprot.2014.121

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.121

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing