Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing


Current high-throughput DNA sequencing technologies enable acquisition of billions of data points through which myriad biological processes can be interrogated, including genetic variation, chromatin structure, gene expression patterns, small RNAs and protein–DNA interactions. Here we describe the MethylC-sequencing (MethylC-seq) library preparation method, a 2-d protocol that enables the genome-wide identification of cytosine DNA methylation states at single-base resolution. The technique involves fragmentation of genomic DNA followed by adapter ligation, bisulfite conversion and limited amplification using adapter-specific PCR primers in preparation for sequencing. To date, this protocol has been successfully applied to genomic DNA isolated from primary cell culture, sorted cells and fresh tissue from over a thousand plant and animal samples.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: MethylC-seq library preparation protocol overview.


  1. 1

    Becker, C. et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480, 245–249 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Calarco, J.P. et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151, 194–205 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Schmitz, R.J. et al. Transgenerational epigenetic instability is a source of novel methylation variants. Science 334, 369–373 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Law, J.A. & Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Ziller, M.J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).

    Article  Google Scholar 

  7. 7

    Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Lister, R. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73 (2011).

    CAS  Article  Google Scholar 

  9. 9

    Ramsahoye, B.H. et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl. Acad. Sci. USA 97, 5237–5242 (2000).

    CAS  Article  Google Scholar 

  10. 10

    Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126, 1189–1201 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Zilberman, D., Gehring, M., Tran, R.K., Ballinger, T. & Henikoff, S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet. 39, 61–69 (2006).

    Article  Google Scholar 

  12. 12

    Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Clark, S.J., Harrison, J., Paul, C.L. & Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22, 2990–2997 (1994).

    CAS  Article  Google Scholar 

  14. 14

    Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 89, 1827–1831 (1992).

    CAS  Article  Google Scholar 

  15. 15

    Hayatsu, H. Bisulfite modification of nucleic acids and their constituents. Prog. Nucleic Acid Res. Mol. Biol. 16, 75–124 (1976).

    CAS  Article  Google Scholar 

  16. 16

    Hayatsu, H., Wataya, Y., Kai, K. & Iida, S. Reaction of sodium bisulfite with uracil, cytosine, and their derivatives. Biochemistry 9, 2858–2865 (1970).

    CAS  Article  Google Scholar 

  17. 17

    Shapiro, R., Braverman, B., Louis, J.B. & Servis, R.E. Nucleic acid reactivity and conformation. II. Reaction of cytosine and uracil with sodium bisulfite. J. Biol. Chem. 248, 4060–4064 (1973).

    CAS  PubMed  Google Scholar 

  18. 18

    Shapiro, R., DiFate, V. & Welcher, M. Deamination of cytosine derivatives by bisulfite. Mechanism of the reaction. J. Am. Chem. Soc. 96, 906–912 (1974).

    CAS  Article  Google Scholar 

  19. 19

    Dowen, R.H. et al. Widespread dynamic DNA methylation in response to biotic stress. Proc. Natl. Acad. Sci. USA 109, E2183–E2191 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Gu, H. et al. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat. Protoc. 6, 468–481 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Bibikova, M. et al. High density DNA methylation array with single CpG site resolution. Genomics 98, 288–295 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Schmitz, R.J. et al. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res. 23, 1663–1674 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Schmitz, R.J. et al. Patterns of population epigenomic diversity. Nature 495, 193–198 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Xie, W. et al. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell 148, 816–831 (2012).

    CAS  Article  Google Scholar 

  25. 25

    Ibarra, C.A. et al. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337, 1360–1364 (2012).

    CAS  Article  Google Scholar 

  26. 26

    Zhong, S. et al. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat. Biotechnol. 31, 154–159 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Potok, M.E., Nix, D.A., Parnell, T.J. & Cairns, B.R. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell 153, 759–772 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Jiang, L. et al. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell 153, 773–784 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Stroud, H. et al. Plants regenerated from tissue culture contain stable epigenome changes in rice. eLife 2, e00354 (2013).

    Article  Google Scholar 

  30. 30

    Takuno, S. & Gaut, B.S. Gene body methylation is conserved between plant orthologs and is of evolutionary consequence. Proc. Natl. Acad. Sci. USA 110, 1797–1802 (2013).

    CAS  Article  Google Scholar 

  31. 31

    Gent, J.I. et al. CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize. Genome Res. 23, 628–637 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Regulski, M. et al. The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res. 23, 1651–1662 (2013).

    CAS  Article  Google Scholar 

  33. 33

    Zemach, A. et al. Local DNA hypomethylation activates genes in rice endosperm. Proc. Natl. Acad. Sci. USA 107, 18729–18734 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Vollmers, C. et al. Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab. 16, 833–845 (2012).

    CAS  Article  Google Scholar 

  35. 35

    Eichten, S.R. et al. Epigenetic and genetic influences on DNA methylation variation in maize populations. Plant Cell 25, 2783–2797 (2013).

    CAS  Article  Google Scholar 

  36. 36

    Greaves, I.K. et al. Trans chromosomal methylation in Arabidopsis hybrids. Proc. Natl. Acad. Sci. USA 109, 3570–3575 (2012).

    CAS  Article  Google Scholar 

  37. 37

    Groszmann, M. et al. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc. Natl. Acad. Sci. USA 108, 2617–2622 (2011).

    CAS  Article  Google Scholar 

  38. 38

    Barber, W.T. et al. Repeat associated small RNAs vary among parents and following hybridization in maize. Proc. Natl. Acad. Sci. USA 109, 10444–10449 (2012).

    CAS  Article  Google Scholar 

  39. 39

    Li, X. et al. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20, 259–276 (2008).

    CAS  Article  Google Scholar 

  40. 40

    Wang, X. et al. Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 21, 1053–1069 (2009).

    CAS  Article  Google Scholar 

  41. 41

    Stroud, H., Greenberg, M.V., Feng, S., Bernatavichute, Y.V. & Jacobsen, S.E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364 (2013).

    CAS  Article  Google Scholar 

  42. 42

    Zemach, A. et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153, 193–205 (2013).

    CAS  Article  Google Scholar 

  43. 43

    Kurihara, Y. et al. Surveillance of 3′ noncoding transcripts requires FIERY1 and XRN3 in Arabidopsis. G3 (Bethesda) 2, 487–498 (2012).

    CAS  Article  Google Scholar 

  44. 44

    Yu, M. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380 (2012).

    CAS  Article  Google Scholar 

  45. 45

    Booth, M.J. et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336, 934–937 (2012).

    CAS  Article  Google Scholar 

  46. 46

    Booth, M.J., Marsico, G., Bachman, M. & Beraldi, D. Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution. Nat. Chem. 6, 435–440 (2014).

    CAS  Article  Google Scholar 

  47. 47

    Cokus, S.J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008).

    CAS  Article  Google Scholar 

  48. 48

    Miura, F., Enomoto, Y., Dairiki, R. & Ito, T. Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res. 40, e136 (2012).

    CAS  Article  Google Scholar 

Download references


This work was supported by the Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation (GMBF3034) and grants from the National Science Foundation (MCB1344299 and MCB122246) to J.R.E. R.L. was supported with an Australian Research Council Future Fellowship (FT120100862). R.J.S. was supported by the US National Institutes of Health (R00GM100000) and the US National Science Foundation (IOS-1339194).

Author information




R.L. and J.R.E. conceived and designed the original protocol. M.A.U., J.R.N., R.L. and R.J.S modified and updated the protocol to its current state. M.A.U., R.L., R.J.S. and J.R.E. wrote the manuscript.

Corresponding author

Correspondence to Joseph R Ecker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Urich, M., Nery, J., Lister, R. et al. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat Protoc 10, 475–483 (2015).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing