Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Liposome display for in vitro selection and evolution of membrane proteins

Abstract

Liposome display is a novel method for in vitro selection and directed evolution of membrane proteins. In this approach, membrane proteins of interest are displayed on liposome membranes through translation from a single DNA molecule by using an encapsulated cell-free translation system. The liposomes are probed with a fluorescence indicator that senses membrane protein activity and selected using a fluorescence-activated cell sorting (FACS) instrument. Consequently, DNA encoding a protein with a desired function can be obtained. By implementing this protocol, researchers can process a DNA library of 107 different mutants. A single round of the selection procedure requires 24 h for completion, and multiple iterations of this technique, which take 1–5 weeks, enable the isolation of a desired gene. As this protocol is conducted entirely in vitro, it enables the engineering of various proteins, including pore-forming proteins, transporters and receptors. As a useful example of the approach, here we detail a procedure for the in vitro evolution of α-hemolysin from Staphylococcus aureus for its pore-forming activity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Overview of the stages involved in liposome construction and screening of DNA when implementing the liposome display method.
Figure 2: Time course of AF488 ligand accumulation with or without the addition of a biotinylated ligand after 60 min of incubation (dashed line).
Figure 3: Typical 2D plots and a histogram of liposomes obtained through FACS.
Figure 4: Stages of liposome construction using the water-in-oil emulsion transfer method.
Figure 5: Functional analysis and sequence identification of α-hemolysin mutants obtained after 20 rounds of selection.

References

  1. Smith, G.P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Amstutz, P., Forrer, P., Zahnd, C. & Pluckthun, A. In vitro display technologies: novel developments and applications. Curr. Opin. Biotechnol. 12, 400–405 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Leemhuis, H., Kelly, R.M. & Dijkhuizen, L. Directed evolution of enzymes: library screening strategies. IUBMB Life 61, 222–228 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Nemoto, N., Miyamoto-Sato, E., Husimi, Y. & Yanagawa, H. In vitro virus: bonding of mRNA bearing puromycin at the 3′-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett. 414, 405–408 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Roberts, R.W. & Szostak, J.W. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA 94, 12297–12302 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hanes, J. & Pluckthun, A. In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Odegrip, R. et al. CIS display: in vitro selection of peptides from libraries of protein-DNA complexes. Proc. Natl. Acad. Sci. USA 101, 2806–2810 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mastrobattista, E. et al. High-throughput screening of enzyme libraries: in vitro evolution of a β-galactosidase by fluorescence-activated sorting of double emulsions. Chem. Biol. 12, 1291–1300 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Tawfik, D.S. & Griffiths, A.D. Man-made cell-like compartments for molecular evolution. Nat. Biotechnol. 16, 652–656 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Nishikawa, T., Sunami, T., Matsuura, T., Ichihashi, N. & Yomo, T. Construction of a gene screening system using giant unilamellar liposomes and a fluorescence-activated cell sorter. Anal. Chem. 84, 5017–5024 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Yildirim, M.A., Goh, K.I., Cusick, M.E., Barabasi, A.L. & Vidal, M. Drug-target network. Nat. Biotechnol. 25, 1119–1126 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Stevens, T.J. & Arkin, I.T. Do more complex organisms have a greater proportion of membrane proteins in their genomes? Proteins 39, 417–420 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Lluis, M.W., Godfroy, J.I. III & Yin, H. Protein engineering methods applied to membrane protein targets. Protein Eng. Des. Sel. 26, 91–100 (2012).

    Article  PubMed  CAS  Google Scholar 

  14. Scott, D.J. & Pluckthun, A. Direct molecular evolution of detergent-stable G protein–coupled receptors using polymer encapsulated cells. J. Mol. Biol. 425, 662–677 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Song, L. et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1866 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Fujii, S., Matsuura, T., Sunami, T., Kazuta, Y. & Yomo, T. In vitro evolution of α-hemolysin using a liposome display. Proc. Natl. Acad. Sci. USA 110, 16796–16801 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sunami, T. et al. Femtoliter compartment in liposomes for in vitro selection of proteins. Anal. Biochem. 357, 128–136 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Pautot, S., Frisken, B.J. & Weitz, D.A. Production of unilamellar vesicles using an inverted emulsion. Langmuir 19, 2870–2879 (2003).

    Article  CAS  Google Scholar 

  20. Yamada, A. et al. Spontaneous transfer of phospholipid-coated oil-in-oil and water-in-oil micro-droplets through an oil/water interface. Langmuir 22, 9824–9828 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Nishimura, K. et al. Population analysis of structural properties of giant liposomes by flow cytometry. Langmuir 25, 10439–10443 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Nishimura, K., Matsuura, T., Sunami, T., Suzuki, H. & Yomo, T. Cell-free protein synthesis inside giant unilamellar vesicles analyzed by flow cytometry. Langmuir 28, 8426–8432 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. de Keyzer, J., van der Does, C. & Driessen, A.J. The bacterial translocase: a dynamic protein channel complex. Cell Mol. Life Sci. 60, 2034–2052 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Kuruma, Y., Suzuki, T., Ono, S., Yoshida, M. & Ueda, T. Functional analysis of membranous Fo-a subunit of F1Fo-ATP synthase by in vitro protein synthesis. Biochem. J. 442, 631–638 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Bayburt, T.H., Grinkova, Y.V. & Sligar, S.G. Assembly of single bacteriorhodopsin trimers in bilayer nanodiscs. Arch. Biochem. Biophys. 450, 215–222 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Periasamy, A. et al. Cell-free protein synthesis of membrane (1,3)-β-D-glucan (curdlan) synthase: co-translational insertion in liposomes and reconstitution in nanodiscs. Biochim. Biophys. Acta 1828, 743–757 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Kuruma, Y., Nishiyama, K., Shimizu, Y., Muller, M. & Ueda, T. Development of a minimal cell-free translation system for the synthesis of presecretory and integral membrane proteins. Biotechnol. Prog. 21, 1243–1251 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Los, G.V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Katzen, F., Peterson, T.C. & Kudlicki, W. Membrane protein expression: no cells required. Trends Biotechnol. 27, 455–460 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Soga, H. et al. In vitro membrane protein synthesis inside cell-sized vesicles reveals the dependence of membrane protein integration on vesicle volume. ACS Synth. Biol. 10.1021/sb400094c (2013).

  31. Long, A.R., O'Brien, C.C. & Alder, N.N. The cell-free integration of a polytopic mitochondrial membrane protein into liposomes occurs cotranslationally and in a lipid-dependent manner. PLoS ONE 7, e46332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Junge, F. et al. Advances in cell-free protein synthesis for the functional and structural analysis of membrane proteins. N. Biotechnol. 28, 262–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Roos, C. et al. Co-translational association of cell-free expressed membrane proteins with supplied lipid bilayers. Mol. Membr. Biol. 30, 75–89 (2013).

    Article  PubMed  Google Scholar 

  34. Kobori, S., Ichihashi, N., Kazuta, Y. & Yomo, T. A controllable gene expression system in liposomes that includes a positive feedback loop. Mol. Biosyst. 9, 1282–1285 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Cotten, S.W., Zou, J.W., Valencia, C.A. & Liu, R.H. Selection of proteins with desired properties from natural proteome libraries using mRNA display. Nat. Protoc. 6, 1163–1182 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Fujimori, S. et al. Next-generation sequencing coupled with a cell-free display technology for high-throughput production of reliable interactome data. Sci. Rep. 2, 691 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Caffrey, M. Crystallizing membrane proteins for structure-function studies using lipidic mesophases. Biochem. Soc. T. 39, 725–732 (2011).

    Article  CAS  Google Scholar 

  38. Kazuta, Y. et al. Comprehensive analysis of the effects of Escherichia coli ORFs on protein translation reaction. Mol. Cell Proteomics 7, 1530–1540 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ohashi, H., Shimizu, Y., Ying, B.W. & Ueda, T. Efficient protein selection based on ribosome display system with purified components. Biochem. Biophys. Res. Commun. 352, 270–276 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Watanabe, M., Tomita, T. & Yasuda, T. Membrane-damaging action of staphylococcal α-toxin on phospholipid-cholesterol liposomes. Biochim. Biophys. Acta 898, 257–265 (1987).

    Article  CAS  PubMed  Google Scholar 

  41. Zhao, H. & Zha, W. In vitro 'sexual' evolution through the PCR-based staggered extension process (StEP). Nat. Protoc. 1, 1865–1871 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Kalmbach, R. et al. Functional cell-free synthesis of a seven helix membrane protein: in situ insertion of bacteriorhodopsin into liposomes. J. Mol. Biol. 371, 639–648 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Walker, B., Krishnasastry, M., Zorn, L. & Bayley, H. Assembly of the oligomeric membrane pore formed by staphylococcal α-hemolysin examined by truncation mutagenesis. J. Biol. Chem. 267, 21782–21786 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Komai, T. Sakamoto and R. Otsuki for their technical assistance. This research was supported in part by the Global Centers of Excellence Program of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Contributions

S.F., T.M. and T.Y. designed the research; S.F. performed experiments; S.F., T.S. and T.N. developed the methods; Y.K. contributed reagents; T.S. and T.N. commented on the paper; and S.F. and T.M. wrote the manuscript.

Corresponding author

Correspondence to Tetsuya Yomo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Histograms representing the size distribution of liposome during the procedure of liposome display.

Liposome was constructed and treated as described in steps 4–22. The horizontal axis shows the size of the unilamellar liposome and vertical axis shows the number of unilamellar liposome measured by FACS in 100 s. The liposome suspensions obtained after liposome construction (step 15), centrifugation (step 17), 4-h incubation (step 18), and ligand addition (step 22) were analyzed. The condition of FACS measurement was set as described in EQUIPMENT SETUP. Significant loss of liposome was not observed.

Supplementary information

Supplementary Figure 1

Histograms representing the size distribution of liposome during the procedure of liposome display. (PDF 89 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fujii, S., Matsuura, T., Sunami, T. et al. Liposome display for in vitro selection and evolution of membrane proteins. Nat Protoc 9, 1578–1591 (2014). https://doi.org/10.1038/nprot.2014.107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.107

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing