Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Monitoring protein conformational changes and dynamics using stable-isotope labeling and mass spectrometry

Abstract

An understanding of the mechanism accompanying functional conformational changes associated with protein activation has important implications for drug design. Here we describe a powerful method, conformational changes and dynamics using stable-isotope labeling and mass spectrometry (CDSiL-MS), which involves chemical labeling by isotope-coded forms of N-ethylmaleimide or succinic anhydride to site-specifically label the side chains of cysteines or lysines, respectively, in native proteins. Subsequent MS analysis allows the quantitative monitoring of reactivity of residues as a function of time, providing a measurement of the labeling kinetics and thereby enabling elucidation of conformational changes of proteins. We demonstrate the utility of this method using a model G protein–coupled receptor, the β2-adrenergic receptor, including experiments that characterize the functional conformational changes associated with activation of distinct signaling pathways induced by different β-adrenoceptor ligands. The procedure requires 5 d, and it can easily be adapted to systems in which soluble and detergent-solubilized membrane protein targets, which undergo function-dependent conformational changes, can be interrogated structurally to allow drug screening.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reaction scheme for stable-isotope labeling of cysteines and lysines in proteins.
Figure 2: Overview of CDSiL-MS strategy designed to monitor conformational changes in proteins.
Figure 3: Different functions that can be used to fit the behavior of labeling kinetics.
Figure 4: Quantification of stable-isotope–labeled peptides for CDSiL-MS strategy.
Figure 5: CDSiL-MS–based monitoring of conformational rearrangements at crucial structural elements of the β2AR.
Figure 6: CDSiL-MS–based strategy for measuring functional residue-specific conformational rearrangements in β2AR.
Figure 7: Multiple β2AR residues from different structural elements that can be monitored with the CDSiL-MS strategy.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Uphoff, S. et al. Monitoring multiple distances within a single molecule using switchable FRET. Nat. Methods 7, 831–836 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Kajihara, D. et al. FRET analysis of protein conformational change through position-specific incorporation of fluorescent amino acids. Nat. Methods 3, 923–929 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Taraska, J.W., Puljung, M.C., Olivier, N.B., Flynn, G.E. & Zagotta, W.N. Mapping the structure and conformational movements of proteins with transition metal ion FRET. Nat. Methods 6, 532–537 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Islas, L.D. & Zagotta, W.N. Short-range molecular rearrangements in ion channels detected by tryptophan quenching of bimane fluorescence. J. Gen. Physiol. 128, 337–346 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ghanouni, P., Steenhuis, J.J., Farrens, D.L. & Kobilka, B.K. Agonist-induced conformational changes in the G-protein–coupling domain of the β2 adrenergic receptor. Proc. Natl. Acad. Sci. USA 98, 5997–6002 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yao, X. et al. Coupling ligand structure to specific conformational switches in the β2-adrenoceptor. Nat. Chem. Biol. 2, 417–422 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Sprangers, R., Velyvis, A. & Kay, L.E. Solution NMR of supramolecular complexes: providing new insights into function. Nat. Methods 4, 697–703 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Chill, J.H. & Naider, F. A solution NMR view of protein dynamics in the biological membrane. Curr. Opin. Struct. Biol. 21, 627–633 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Bokoch, M.P. et al. Ligand-specific regulation of the extracellular surface of a G protein–coupled receptor. Nature 463, 108–112 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nygaard, R. et al. The dynamic process of β2-adrenergic receptor activation. Cell 152, 532–542 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hubbell, W.L., Cafiso, D.S. & Altenbach, C. Identifying conformational changes with site-directed spin labeling. Nat. Struct. Biol. 7, 735–739 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Farrens, D.L., Altenbach, C., Yang, K., Hubbell, W.L. & Khorana, H.G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Aebersold, R. & Mann, M. Mass spectrometry–based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Cravatt, B.F., Simon, G.M. & Yates, J.R. III. The biological impact of mass spectrometry–based proteomics. Nature 450, 991–1000 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Ong, S.E. & Mann, M. Mass spectrometry–based proteomics turns quantitative. Nat. Chem. Biol. 1, 252–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Bantscheff, M., Schirle, M., Sweetman, G., Rick, J. & Kuster, B. Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389, 1017–1031 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Heck, A.J. & Krijgsveld, J. Mass spectrometry-based quantitative proteomics. Expert Rev. Proteomics 1, 317–326 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Mendoza, V.L. & Vachet, R.W. Probing protein structure by amino acid–specific covalent labeling and mass spectrometry. Mass Spectrom. Rev. 28, 785–815 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Engen, J.R. Analysis of protein conformation and dynamics by hydrogen/deuterium exchange MS. Anal. Chem. 81, 7870–7875 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chalmers, M.J., Busby, S.A., Pascal, B.D., West, G.M. & Griffin, P.R. Differential hydrogen/deuterium exchange mass spectrometry analysis of protein-ligand interactions. Expert Rev. Proteomics 8, 43–59 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morgan, C.R. & Engen, J.R. Investigating solution-phase protein structure and dynamics by hydrogen exchange mass spectrometry. Curr. Protoc. Protein Sci. 17, 6.1–6.17 (2009).

    Google Scholar 

  23. West, G.M. et al. Ligand-dependent perturbation of the conformational ensemble for the GPCR β2 adrenergic receptor revealed by HDX. Structure 19, 1424–1432 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wales, T.E. & Engen, J.R. Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom. Rev. 25, 158–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Kaltashov, I.A., Bobst, C.E. & Abzalimov, R.R. H/D exchange and mass spectrometry in the studies of protein conformation and dynamics: is there a need for a top-down approach? Anal. Chem. 81, 7892–7899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. England, J., Britovsek, G.J., Rabadia, N. & White, A.J. Ligand topology variations and the importance of ligand field strength in non-heme iron catalyzed oxidations of alkanes. Inorg. Chem. 46, 3752–3767 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Katta, V. & Chait, B.T. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 5, 214–217 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Yan, X., Zhang, H., Watson, J., Schimerlik, M.I. & Deinzer, M.L. Hydrogen/deuterium exchange and mass spectrometric analysis of a protein containing multiple disulfide bonds: solution structure of recombinant macrophage colony stimulating factor-β (rhM-CSFβ). Protein Sci. 11, 2113–2124 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, X. et al. Dynamics of the β2-adrenergic G protein–coupled receptor revealed by hydrogen-deuterium exchange. Anal. Chem. 82, 1100–1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Niwayama, S., Kurono, S. & Matsumoto, H. Synthesis of d-labeled N-alkylmaleimides and application to quantitative peptide analysis by isotope differential mass spectrometry. Bioorg. Med. Chem. Lett. 11, 2257–2261 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Oda, Y., Huang, K., Cross, F.R., Cowburn, D. & Chait, B.T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl. Acad. Sci. USA 96, 6591–6596 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Venable, J.D., Dong, M.Q., Wohlschlegel, J., Dillin, A. & Yates, J.R. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat. Methods 1, 39–45 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Wu, C.C., MacCoss, M.J., Howell, K.E., Matthews, D.E. & Yates, J.R. III. Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal. Chem. 76, 4951–4959 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics 1, 376–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Ong, S.E. & Mann, M. Stable isotope labeling by amino acids in cell culture for quantitative proteomics. Methods Mol. Biol. 359, 37–52 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Shiio, Y. & Aebersold, R. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat. Protoc. 1, 139–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Thompson, A. et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Dayon, L. et al. Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal. Chem. 80, 2921–2931 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. McAlister, G.C. et al. Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Anal. Chem. 84, 7469–7478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ye, X., Luke, B., Andresson, T. & Blonder, J. 18O stable isotope labeling in MS-based proteomics. Brief Funct. Genomic Proteomic 8, 136–144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A.J. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Pratt, J.M. et al. Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat. Protoc. 1, 1029–1043 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Kleifeld, O. et al. Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat. Biotechnol. 28, 281–288 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Pierce, K.L., Premont, R.T. & Lefkowitz, R.J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Lefkowitz, R.J. A brief history of G protein–coupled receptors (Nobel lecture). Angew. Chem. Int. Ed. Engl. 52, 6366–6378 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Lagerstrom, M.C. & Schioth, H.B. Structural diversity of G protein–coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7, 339–357 (2008).

    Article  PubMed  CAS  Google Scholar 

  48. Lefkowitz, R.J. & Shenoy, S.K. Transduction of receptor signals by β-arrestins. Science 308, 512–517 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Lohse, M.J., Benovic, J.L., Codina, J., Caron, M.G. & Lefkowitz, R.J. β-Arrestin: a protein that regulates β-adrenergic receptor function. Science 248, 1547–1550 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Luttrell, L.M. & Lefkowitz, R.J. The role of β-arrestins in the termination and transduction of G-protein–coupled receptor signals. J. Cell Sci. 115, 455–465 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Shukla, A.K. et al. Structure of active β-arrestin-1 bound to a G-protein–coupled receptor phosphopeptide. Nature 497, 137–141 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Violin, J.D. & Lefkowitz, R.J. β-arrestin–biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci. 28, 416–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Rajagopal, S., Rajagopal, K. & Lefkowitz, R.J. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat. Rev. Drug Discov. 9, 373–386 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kobilka, B.K. & Deupi, X. Conformational complexity of G-protein–coupled receptors. Trends Pharmacol. Sci. 28, 397–406 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Kahsai, A.W. et al. Multiple ligand-specific conformations of the β2-adrenergic receptor. Nat. Chem. Biol. 7, 692–700 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Galandrin, S., Oligny-Longpre, G. & Bouvier, M. The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol. Sci. 28, 423–430 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Rasmussen, S.G. et al. Crystal structure of the human β2 adrenergic G protein–coupled receptor. Nature 450, 383–387 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Rosenbaum, D.M. et al. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318, 1266–1273 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein–coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Scheerer, P. et al. Crystal structure of opsin in its G protein–interacting conformation. Nature 455, 497–502 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Rasmussen, S.G. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Warne, T. et al. The structural basis for agonist and partial agonist action on a β1-adrenergic receptor. Nature 469, 241–244 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rasmussen, S.G. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wisler, J.W. et al. A unique mechanism of β-blocker action: carvedilol stimulates β-arrestin signaling. Proc. Natl. Acad. Sci. USA 104, 16657–16662 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kobilka, B.K. Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein–coupled receptor. Anal. Biochem. 231, 269–271 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Wessel, D. & Flugge, U.I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 138, 141–143 (1984).

    Article  CAS  PubMed  Google Scholar 

  67. Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W. & Gygi, S.P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. USA 100, 6940–6945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kettenbach, A.N., Rush, J. & Gerber, S.A. Absolute quantification of protein and post-translational modification abundance with stable isotope-labeled synthetic peptides. Nat. Protoc. 6, 175–186 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Cohen, S.L. & Chait, B.T. Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal. Chem. 68, 31–37 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Liu, J.J., Horst, R., Katritch, V., Stevens, R.C. & Wuthrich, K. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335, 1106–1110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R.J. Lefkowitz and B.K. Kobilka for invaluable guidance; T.G. Oas for enthusiastic support; A.K. Shukla and S. Ahn for stimulating ideas; and R.T. Strachan and A. Blanc for critically reading the manuscript. We gratefully acknowledge T. Haystead (Duke University) and D. Loiselle for valuable assistance with the mass spectrometry experiments; we are also grateful to C.H. Borchers (University of Victoria, Canada) and I.A. Kaltashov (University of Massachusetts) for helpful discussions; we also thank X. Jiang for excellent technical assistance. This work was supported, in whole or in part, by US National Institutes of Health grant no. HL-075443 Proteomics Core support to K.X.

Author information

Authors and Affiliations

Authors

Contributions

A.W.K. and K.X. designed and conducted the experiments; A.W.K., K.X., S.R. and J.S. analyzed data; A.W.K., S.R. and K.X. wrote the paper; all authors read, edited and discussed the paper.

Corresponding author

Correspondence to Kunhong Xiao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahsai, A., Rajagopal, S., Sun, J. et al. Monitoring protein conformational changes and dynamics using stable-isotope labeling and mass spectrometry. Nat Protoc 9, 1301–1319 (2014). https://doi.org/10.1038/nprot.2014.075

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.075

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing