Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Synthesis, labeling and bioanalytical applications of a tris(2,2′-bipyridyl)ruthenium(II)-based electrochemiluminescence probe

Abstract

Assays using probes labeled with electrochemiluminescent moieties are extremely powerful analytical tools that are used in fields such as medical diagnostics, environmental analysis and food safety monitoring, in which sensitive, reliable and reproducible detection of biomolecules is a requirement. The most efficient electrochemiluminescence (ECL) reaction to date is based on tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) with tripropylamine (TPrA) as the co-reactant. Here we present a detailed protocol for preparing Ru(bpy)32+ probes and their bioanalytical applications. This protocol includes (i) the synthesis of a biologically active Ru(bpy)32+-N-hydroxysuccinimide (NHS) ester, (ii) its covalent labeling with both antibodies and DNA probes and (iii) the detection and quantification of ECL in a microfluidic system with a paramagnetic microbead solid support. In our magnetic bead–based ECL system, two probes are required: a capture probe (labeled with biotin to be captured by a streptavidin-coated magnetic bead) and a detector probe (labeled with Ru(bpy)32+). The complex consisting of the analyte, the capture probe, the detector probe and the magnetic bead is brought into contact with the electrode by using a magnetic field. The Ru(bpy)32+ reacts with TPrA in solution to generate the ECL signal. The full protocol, including the synthesis and labeling of the bioactive Ru(bpy)32+, requires 5–6 d to complete. ECL immunoassays or nucleic acid tests only require 1.5–2 h, including the sample preparation time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic bead–based ECL measurement system.
Figure 2
Figure 3
Figure 4: Schematic of the sandwich immunoassay and nucleic acid assays.
Figure 5: The reaction in progress.
Figure 6: Spectral characterization of the Ru(bpy)32+-NHS ester.
Figure 7: Assay performance of protein detection by current ECL technique.
Figure 8: Assay performance of nucleic acid detection by the current ECL technique.

Similar content being viewed by others

References

  1. Richter, M.M. Electrochemiluminescence (ECL). Chem. Rev. 104, 3003–3036 (2004).

    Article  CAS  Google Scholar 

  2. Miao, W.J. Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev. 108, 2506–2553 (2008).

    Article  CAS  Google Scholar 

  3. Ma, D.L. et al. Label-free luminescent oligonucleotide-based probes. Chem. Soc. Rev. 42, 3427–3440 (2013).

    Article  CAS  Google Scholar 

  4. Dodeigne, C., Thunus, L. & Lejeune, R. Chemiluminescence as diagnostic tool. A review. Talanta 51, 415–439 (2000).

    Article  CAS  Google Scholar 

  5. Leung, K.H. et al. Detection of base excision repair enzyme activity using a luminescent G-quadruplex selective switch-on probe. Chem. Commun. 49, 5630–5632 (2013).

    Article  CAS  Google Scholar 

  6. Pfleger, K.D. & Eidne, K.A. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat. Methods 3, 165–174 (2006).

    Article  CAS  Google Scholar 

  7. Leung, C.H. et al. Luminescent detection of DNA-binding proteins. Nucleic Acids Res. 40, 941–955 (2012).

    Article  CAS  Google Scholar 

  8. Bard, A.J. & Faulkner, L.R. Electrochem. Methods (Wiley, 1980).

  9. Bard, A.J. (ed.) Electrogenerated chemiluminescence (Marcel Dekker, 2004).

  10. Knight, A.W. Electrogenerated chemiluminescence. in Chemiluminescence in Analytical Chemistry 211–247 (Marcel Dekker, 2001).

  11. Chang, M.M., Saji, T. & Bard, A.J. Electrogenerated chemiluminescence. 30. Electrochemical oxidation of oxalate ion in the presence of luminescers in acetonitrile solutions. J. Am. Chem. Soc. 99, 5399–5403 (1977).

    Article  CAS  Google Scholar 

  12. Rubinstein, I. & Bard, A.J. Electrogenerated chemiluminescence. 37. Aqueous ECL systems based on tris(2,2′-bipyridine)ruthenium2+ and oxalate or organic acids. J. Am. Chem. Soc. 103, 512–516 (1981).

    Article  CAS  Google Scholar 

  13. Leland, J.K. & Powell, M.J. Electrogenerated chemiluminescence: An oxidative-reduction type ECL reaction sequence using tripropylamine. J. Electrochem. Soc. 137, 3127–3131 (1990).

    Article  CAS  Google Scholar 

  14. Miao, W., Choi, J.-P. & Bard, A.J. Electrogenerated chemiluminescence 69: the tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)3 2+)/tri-n-propylamine (TPrA) system revisited - A new route involving TPrA•+ cation radicals. J. Am. Chem. Soc. 124, 14478–14485 (2002).

    Article  CAS  Google Scholar 

  15. Ge, L. et al. Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials 33, 1024–1031 (2012).

    Article  CAS  Google Scholar 

  16. Wang, X. et al. A solid-state electrochemiluminescence biosensing switch for detection of thrombin based on ferrocene-labeled molecular beacon aptamer. Biosens. Bioelectron. 24, 3288–3292 (2009).

    Article  CAS  Google Scholar 

  17. Yuan, T., Liu, Z., Hu, L., Zhang, L. & Xu, G. Label-free supersandwich electrochemiluminescence assay for detection of sub-nanomolar Hg2+. Chem. Commun. 47, 11951–11953 (2011).

    Article  CAS  Google Scholar 

  18. Lin, Z., Chen, L., Zhu, X., Qiu, B. & Chen, G. Signal-on electrochemiluminescence biosensor for thrombin based on target-induced conjunction of split aptamer fragments. Chem. Commun. 46, 5563–5565 (2010).

    Article  CAS  Google Scholar 

  19. Sun, B. et al. Double covalent coupling method for the fabrication of highly sensitive and reusable electrogenerated chemiluminescence sensors. Anal. Chem. 82, 5046–5052 (2010).

    Article  CAS  Google Scholar 

  20. Tang, X. et al. Quenching of the electrochemiluminescence of tris(2,2′-bipyridine)ruthenium (II)/tri-n-propylamine by pristine carbon nanotube and its application to quantitative detection of DNA. Anal. Chem. 85, 1711–1718 (2013).

    Article  CAS  Google Scholar 

  21. Wu, Y., Shi, H., Yuan, L. & Liu, S. A novel electrochemiluminescence immunosensor via polymerization-assisted amplification. Chem. Commun. 46, 7763–7765 (2010).

    Article  CAS  Google Scholar 

  22. Xu, L., Li, Y., Wu, S., Liu, X. & Su, B. Imaging latent fingerprints by electrochemiluminescence. Angew. Chem. Int. Ed. 124, 8192–8196 (2012).

    Article  Google Scholar 

  23. Xu, X.H. & Bard, A.J. Electrogenerated chemiluminescence. 55. emission from adsorbed Ru(bpy)3 2+ on graphite, platinum, and gold. Langmuir 10, 2409–2414 (1994).

    Article  CAS  Google Scholar 

  24. Blackburn, G.F. et al. Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics. Clin. Chem. 37, 91534–91539 (1991).

    Google Scholar 

  25. Yan, G.H., Xing, D., Tan, S.C. & Chen, Q. Rapid and sensitive immunomagnetic-electrochemiluminescent detection of p53 antibodies in human serum. J. Immunol. Methods 288, 47–54 (2004).

    Article  CAS  Google Scholar 

  26. Kenten, J.H. et al. Rapid electrochemiluminescence assays of polymerase chain reaction products. Clin. Chem. 37, 1626–1632 (1991).

    CAS  PubMed  Google Scholar 

  27. Zhu, D.B., Xing, D., Shen, X.Y. & Liu, J.F. A method to quantitatively detect H-ras point mutation based on electrochemiluminescence. Biochem. Biophys. Res. Commun. 324, 964–969 (2004).

    Article  CAS  Google Scholar 

  28. Yin, X.B., Dong, S. & Wang, E. Analytical applications of the electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium and its derivatives. Trends Anal. Chem. 23, 432–441 (2004).

    Article  CAS  Google Scholar 

  29. Forster, R.J., Bertoncello, P. & Keyes, T.E. Electrogenerated chemiluminescence. Annu. Rev. Anal. Chem. 2, 359–385 (2009).

    Article  CAS  Google Scholar 

  30. Lee, W.-Y. Tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence in analytical science. Microchimica. Acta 127, 19–39 (1997).

    Article  CAS  Google Scholar 

  31. Wei, H. & Wang, E.K. Solid-state electrochemiluminescence of tris(2,2′-bipyridyl) ruthenium. Trends Anal. Chem. 27, 447–459 (2008).

    Article  CAS  Google Scholar 

  32. Hu, L.Z. & Xu, G.B. Applications and trends in electrochemiluminescence. Chem. Soc. Rev. 39, 3275–3304 (2010).

    Article  CAS  Google Scholar 

  33. Bertoncello, P. & Forster, R.J. Nanostructured materials for electrochemiluminescence (ECL)-based detection methods: recent advances and future perspectives. Biosens. Bioelectron. 24, 3191–3200 (2009).

    Article  CAS  Google Scholar 

  34. Kijek, T.M., Rossi, C.A., Moss, D., Parker, R.W. & Henchal, E.A. Rapid and sensitive immunomagnetic-electrochemiluminescent detection of staphyloccocal enterotoxin B. J. Immunol. Methods 236, 9–17 (2000).

    Article  CAS  Google Scholar 

  35. Gemen, B.V. et al. A one-tube quantitative HIV-1 RNA NASBA nucleic acid amplification assay using electrochemiluminescent (ECL) labelled probes. J. Virol. Methods 49, 157–167 (1994).

    Article  Google Scholar 

  36. Zhou, X.M., Xing, D., Zhu, D.B. & Jia, L. Magnetic bead and nanoparticle based electrochemiluminescence amplification assay for direct and sensitive measuring of telomerase activity. Anal. Chem. 81, 255–261 (2009).

    Article  CAS  Google Scholar 

  37. Boom, R. et al. A highly sensitive assay for detection and quantitation of human cytomegalovirus DNA in serum and plasma by PCR and electrochemiluminescence. J. Clin. Microbiol. 37, 1489–1497 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, Y. et al. Magnetic beads-based electrochemiluminescence immunosensor for determination of cancer markers using quantum dot functionalized PtRu alloys as labels. Analyst 137, 2176–2182 (2012).

    Article  CAS  Google Scholar 

  39. Zhu, X., Zhou, X.M. & Xing, D. Nano-magnetic primer based electrochemiluminescence-polymerase chain reaction (NMPE-PCR) assay. Biosens. Bioelectron. 31, 463–468 (2012).

    Article  CAS  Google Scholar 

  40. Duan, R.X., Zhou, X.M. & Xing, D. Electrochemiluminescence biobarcode method based on cysteamine-gold nanoparticle conjugates. Anal. Chem. 82, 3099–3103 (2010).

    Article  CAS  Google Scholar 

  41. Guglielmo-Viret, V. & Thullier, P. Comparison of an electrochemiluminescence assay in plate format over a colorimetric ELISA, for the detection of ricin B chain (RCA-B). J. Immunol. Methods 328, 70–78 (2007).

    Article  CAS  Google Scholar 

  42. Guglielmo-Viret, V., Attrée, O., Blanco-Gros, V. & Thullier, P. Comparison of electrochemiluminescence assay and ELISA for the detection of Clostridium botulinum type B neurotoxin,. J. Immunol. Methods 301, 164–172 (2005).

    Article  CAS  Google Scholar 

  43. Bruno, J.G. & Kiel, J.L. In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosens. Bioelectron. 14, 457–464 (1999).

    Article  CAS  Google Scholar 

  44. Zhu, D.B., Tang, Y.B., Xing, D. & Chen, W.R. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method. Anal. Chem. 80, 3566–3571 (2008).

    Article  CAS  Google Scholar 

  45. Wu, S.L. et al. Detection of dengue viral RNA using a nucleic acid sequence-based amplification assay. J. Clin. Microbiol. 39, 2794–2798 (2001).

    Article  CAS  Google Scholar 

  46. Antony, S. et al. Novel high-throughput electrochemiluminescent assay for identification of human tyrosyl-DNA phosphodiesterase (Tdp1) inhibitors and characterization of furamidine (NSC 305831) as an inhibitor of Tdp1. Nucleic Acids Res. 35, 4474–4484 (2007).

    Article  CAS  Google Scholar 

  47. Li, Q., Zhou, X.M. & Xing, D. Rapid and highly sensitive detection of mercury ion (Hg2+) by magnetic beads-based electrochemiluminescence assay. Biosens. Bioelectron. 26, 859–862 (2010).

    Article  Google Scholar 

  48. Yu, H., Raymonda, J.W., McMahon, T.M. & Campagnari, A.A. Detection of biological threat agents by immunomagnetic microsphere-based solid-phase fluorogenic- and electro-chemiluminescence. Biosens. Bioelectron. 14, 829–840 (2000).

    Article  CAS  Google Scholar 

  49. Deiss, F. et al. Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level. J. Am. Chem. Soc. 131, 6088–6089 (2009).

    Article  CAS  Google Scholar 

  50. Liu, X., Shi, L., Niu, W., Li, H. & Xu, G. Environmentally friendly and highly sensitive ruthenium(II)tris(2,2′-bipyridyl) electrochemiluminescent system using 2-(dibutylamino) ethanol as co-reactant. Angew. Chem. Int. Ed. 119, 425–428 (2007).

    Article  Google Scholar 

  51. Cao, W., Ferrance, J.P., Demas, J. & Landers, J.P. Quenching of the electrochemiluminescence of tris(2,2′-bipyridine)ruthenium(II) by ferrocene and its potential application to quantitative DNA detection. J. Am. Chem. Soc. 128, 7572–7578 (2006).

    Article  CAS  Google Scholar 

  52. Zhou, M., Roovers, J., Robertson, G.P. & Grover, C.P. Multilabeling biomolecules at a single site. 1. Synthesis and characterization of a dendritic label for electrochemiluminescence assays. Anal. Chem. 75, 6708–6717 (2003).

    Article  CAS  Google Scholar 

  53. Terpetschnig, E., Szmacinski, H., Malak, H. & Lakowicz, J.R. Metal-ligand complexes as a new class of long-lived fluorophores for protein hydrodynamics. Biophys. J. 68, 342–350 (1995).

    Article  CAS  Google Scholar 

  54. Terpetschnig, E., Szmacinski, H. & Lakowicz, J.R. Fluorescence polarization immunoassay of a high-molecular-weight antigen based on a long-lifetime Ru-ligand complex. Anal. Biochem. 227, 140–147 (1995).

    Article  CAS  Google Scholar 

  55. Gudibande, S.R., Kenten, J.H., Link, J., Friedman, K. & Massey, R.J. Rapid, non-separation electrochemiluminescent DNA hybridization assays for PCR products, using 3′-labelled oligonucleotide probes. Mol. Cell. Probes 6, 495–503 (1992).

    Article  CAS  Google Scholar 

  56. Su, Q., Xing, D. & Zhou, X.M. Magnetic beads-based rolling-circle amplification–electrochemiluminescence assay for highly sensitive detection of point mutation. Biosens. Bioelectron. 25, 1615–1621 (2010).

    Article  CAS  Google Scholar 

  57. Workman, S. & Richter, M.M. The effects of nonionic surfactants on the tris(2,2′-bipyridyl)ruthenium(II)-tripropylamine electrochemiluminescence system. Anal. Chem. 72, 5556–5561 (2000).

    Article  CAS  Google Scholar 

  58. Zu, Y. & Bard, A.J. Electrogenerated chemiluminescence. 67. dependence of light emission of the tris(2,2′)bipyridylruthenium(II)/tripropylamine system on electrode surface hydrophobicity. Anal. Chem. 73, 3960–3964 (2001).

    Article  CAS  Google Scholar 

  59. Komori, K., Takada, K., Hatozaki, O. & Oyama, N. Electrochemiluminescence of Ru(II) complexes immobilized on a magnetic microbead surface: distribution of magnetic microbeads on the electrode surface and effect of azideion. Langmuir 23, 6446–6452 (2007).

    Article  CAS  Google Scholar 

  60. Wang, J. et al. Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal. Chem. 75, 3941–3945 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Basic Research Program of China (2010CB732602), the National Natural Science Foundation of China (NSFC) (81101121), the Key Program of the NSFC-Guangdong Joint Funds of China (U0931005) and the Program of the Pearl River Young Talents of Science and Technology in Guangzhou, China (2013J2200021).

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and D.X. conceived and designed the study, supervised the work and wrote the manuscript. X.Z., Y.L., Z.M., D.Z. and W.L. conducted the experiments and the data analysis. X.Z., W.L. and H.L. designed and prepared all figures.

Corresponding author

Correspondence to Da Xing.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 ESI-MS of [Ru(bpy)2(dcbpy)(PF6)2].

Supplementary Figure 2 1H NMR of [Ru(bpy)2(dcbpy)(PF6)2] in DMSO at 400 MHz.

Supplementary Figure 3 Characterization of the labeling of DNA by LC/MS.

LC/MS chromatogram of (A) DNA probes not labelled with Ru(bpy)32+-NHS, and (B) DNA probes labeled with Ru(bpy)32+-NHS. The mass of the unlabeled DNA probes was 6872.4, and the mass of the Ru(bpy)32+-labeled DNA probes was 7510.7. A mass increase of 638.3 after labeling indicated only a single probe labeled each DNA molecule. (Note that another NHS group unanticipated in the labeling reaction would hydrolyze to a carboxyl group).

Supplementary information

Supplementary Figure 1

ESI-MS of [Ru(bpy)2(dcbpy)(PF6)2]. (PDF 67 kb)

Supplementary Figure 2

1H NMR of [Ru(bpy)2(dcbpy)(PF6)2] in DMSO at 400 MHz. (PDF 166 kb)

Supplementary Figure 3

Characterization of the labeling of DNA by LC/MS. (PDF 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Zhu, D., Liao, Y. et al. Synthesis, labeling and bioanalytical applications of a tris(2,2′-bipyridyl)ruthenium(II)-based electrochemiluminescence probe. Nat Protoc 9, 1146–1159 (2014). https://doi.org/10.1038/nprot.2014.060

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.060

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing