Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Depsipeptide substrates for sortase-mediated N-terminal protein ligation

Abstract

Technologies that allow the efficient chemical modification of proteins under mild conditions are widely sought after. Sortase-mediated peptide ligation provides a strategy for modifying the N or C terminus of proteins. This protocol describes the use of depsipeptide substrates (containing an ester linkage) with sortase A (SrtA) to completely modify proteins carrying a single N-terminal glycine residue under mild conditions in 4–6 h. The SrtA-mediated ligation reaction is reversible, so most labeling protocols that use this enzyme require a large excess of both substrate and sortase to produce high yields of ligation product. In contrast, switching to depsipeptide substrates effectively renders the reaction irreversible, allowing complete labeling of proteins with a small excess of substrate and catalytic quantities of sortase. Herein we describe the synthesis of depsipeptide substrates that contain an ester linkage between a threonine and glycolic acid residue and an N-terminal FITC fluorophore appended via a thiourea linkage. The synthesis of the depsipeptide substrate typically takes 2–3 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Substrate variants and reaction with proteins.
Figure 2: Synthetic route to depsipeptide substrates via Fmoc depsipeptide building block 3.
Figure 3: Examples of monitoring protein labeling reactions in real time.

Similar content being viewed by others

References

  1. Rostovtsev, V.V., Green, L.G., Fokin, V.V. & Sharpless, K.B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective 'ligation' of azides and terminal alkynes. Angew. Chem. Int. Ed 41, 2596–2599 (2002).

    Article  CAS  Google Scholar 

  2. Agard, N.J., Prescher, J.A. & Bertozzi, C.R. A strain-promoted [3 + 2] azidealkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    Article  CAS  Google Scholar 

  3. Nilsson, B.L., Kiessling, L.L. & Raines, R.T. Staudinger ligation: a peptide from a thioester and azide. Org. Lett. 2, 1939–1941 (2000).

    Article  CAS  Google Scholar 

  4. Saxon, E. & Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    Article  CAS  Google Scholar 

  5. Link, A.J., Mock, M.L. & Tirrell, D.A. Non-canonical amino acids in protein engineering. Curr. Opin. Biotechnol. 14, 603–609 (2003).

    Article  CAS  Google Scholar 

  6. Baker, D.P. et al. N-Terminally PEGylated human interferon-β-1a with improved pharmacokinetic properties and in vivo efficacy in a melanoma angiogenesis model. Bioconjugate Chem. 17, 179–188 (2005).

    Article  Google Scholar 

  7. Mazmanian, S.K., Liu, G., Ton-That, H. & Schneewind, O. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285, 760–763 (1999).

    Article  CAS  Google Scholar 

  8. Mazmanian, S.K., Ton-That, H. & Schneewind, O. Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol. Microbiol. 40, 1049–1057 (2001).

    Article  CAS  Google Scholar 

  9. Ton-That, H., Liu, G., Mazmanian, S.K., Faull, K.F. & Schneewind, O. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc. Natl. Acad. Sci. USA 96, 12424–12429 (1999).

    Article  CAS  Google Scholar 

  10. Ton-That, H., Mazmanian, S.K., Faull, K.F. & Schneewind, O. Anchoring of surface proteins to the cell wall of Staphylococcus aureus: sortase catalyzed in vitro transpeptidation reaction using LPXTG peptide and NH2-Gly3substrates. J. Biol. Chem. 275, 9876–9881 (2000).

    Article  CAS  Google Scholar 

  11. Popp, M.W.-L. & Ploegh, H.L. Making and breaking peptide bonds: protein engineering using sortase. Angew. Chem. Int. Ed. 50, 5024–5032 (2011).

    Article  CAS  Google Scholar 

  12. Tsukiji, S. & Nagamune, T. Sortase-mediated ligation: a gift from Gram-positive bacteria to protein engineering. Chembiochem 10, 787–798 (2009).

    Article  CAS  Google Scholar 

  13. Popp, M.W., Antos, J.M., Grotenbreg, G.M., Spooner, E. & Ploegh, H.L. Sortagging: a versatile method for protein labeling. Nat. Chem. Biol. 3, 707–708 (2007).

    Article  CAS  Google Scholar 

  14. Guo, X., Wang, Q., Swarts, B.M. & Guo, Z. Sortase-catalyzed peptideglycosylphosphatidylinositol analogue ligation. J. Am. Chem. Soc. 131, 9878–9879 (2009).

    Article  CAS  Google Scholar 

  15. Parthasarathy, R., Subramanian, S. & Boder, E.T. Sortase A as a novel molecular 'stapler' for sequence-specific protein conjugation. Bioconjugate Chem. 18, 469–476 (2007).

    Article  CAS  Google Scholar 

  16. Mao, H.Y., Hart, S.A., Schink, A. & Pollok, B.A. Sortase-mediated protein ligation: a new method for protein engineering. J. Am. Chem. Soc. 126, 2670–2671 (2004).

    Article  CAS  Google Scholar 

  17. Antos, J.M., Miller, G.M., Grotenbreg, G.M. & Ploegh, H.L. Lipid modification of proteins through sortase-catalyzed transpeptidation. J. Am. Chem. Soc. 130, 16338–16343 (2008).

    Article  CAS  Google Scholar 

  18. Samantaray, S., Marathe, U., Dasgupta, S., Nandicoori, V.K. & Roy, R.P. Peptide-sugar ligation catalyzed by transpeptidase sortase: a facile approach to neoglycoconjugate synthesis. J. Am. Chem. Soc. 130, 2132–2133 (2008).

    Article  CAS  Google Scholar 

  19. Yamamoto, T. & Nagamune, T. Expansion of the sortase-mediated labeling method for site-specific N-terminal labeling of cell surface proteins on living cells. Chem. Commun. 2009, 1022–1024 (2009).

    Article  Google Scholar 

  20. Antos, J.M. et al. Site-specific N- and C-terminal labeling of a single polypeptide using sortases of different specificity. J. Am. Chem. Soc. 131, 10800–10801 (2009).

    Article  CAS  Google Scholar 

  21. Williamson, D.J., Fascione, M.A., Webb, M.E. & Turnbull, W.B. Efficient N-terminal labeling of proteins by use of sortase. Angew. Chem. Int. Ed. 51, 9377–9380 (2012).

    Article  CAS  Google Scholar 

  22. Theile, C.S. et al. Site-specific N-terminal labeling of proteins using sortase-mediated reactions. Nat. Protoc. 8, 1800–1807 (2013).

    Article  Google Scholar 

  23. Suich, D.J., Ballinger, M.D., Wells, J.A. & DeGrado, W.F. Fmoc-based synthesis of glycolate ester peptides for the assembly of de novo designed multimeric proteins using subtiligase. Tetrahedron Lett. 37, 6653–6656 (1996).

    Article  CAS  Google Scholar 

  24. Jobling, M.G., Palmer, L.M., Erbe, J.L. & Holmes, R.K. Construction and characterization of versatile cloning vectors for efficient delivery of native foreign proteins to the periplasm of Escherichia coli. Plasmid 38, 158–173 (1997).

    Article  CAS  Google Scholar 

  25. Guimaraes, C.P. et al. Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions. Nat. Protoc. 8, 1787–1799 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Neylon for providing an expression construct for sortase A and K. Drickamer for providing a plasmid for expressing the gMBP protein. This work was supported by an Engineering and Physical Sciences Research Council (EPSRC) studentship for D.J.W. and also by EPSRC research grants EP/G043302/1, EP/I013083/1 and Biotechnology and Biological Sciences Research Council research grant BB/G004145/1. W.B.T. thanks the Royal Society for a University Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the design of the experiments; D.J.W. conducted the experiments; all authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Michael E Webb or W Bruce Turnbull.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, D., Webb, M. & Turnbull, W. Depsipeptide substrates for sortase-mediated N-terminal protein ligation. Nat Protoc 9, 253–262 (2014). https://doi.org/10.1038/nprot.2014.003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.003

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing