Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Copper-catalyzed asymmetric conjugate addition of alkylzirconium reagents to cyclic enones to form quaternary centers

Abstract

This protocol describes the catalytic asymmetric formation of all-carbon quaternary centers—a distinctive feature of many natural products and pharmaceuticals—via conjugate addition of alkylzirconium reagents to a tertiary enone. This methodology uses alkenes as starting materials and enables the incorporation of functional groups. The alkylzirconium reagent is generated in situ by mixing the alkene with the Schwartz reagent. The alkylzirconium is added to a solution containing a copper-ligand complex, and then the enone is added to the mixture. The addition of pent-4-en-1-ylbenzene to 3-methyl-2-cyclohexenone is detailed herein as a generic example. This procedure works at room temperature (25 °C), and it is scalable to at least 1.5 g. The setup of the reaction takes 3–5 h and the reaction goes to completion within 4–20 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: General reaction schemes.
Figure 3: Reaction conditions used in our research group.
Figure 4: The Schwartz reagent.
Figure 5: Appearance of copper solution.
Figure 6: Sequence of procedures implemented in Steps 10–13.
Figure 7

Similar content being viewed by others

References

  1. Paterson, I. & Anderson, E.A. The renaissance of natural products as drug candidates. Science 310, 451–453 (2005).

    Article  Google Scholar 

  2. Butler, M.S. Natural products to drugs: natural product-derived compounds in clinical trials. Nat. Prod. Rep. 25, 475–516 (2008).

    Article  CAS  Google Scholar 

  3. Ishibashi, M. et al. Metachromins A and B, novel antineoplastic sesquiterpenoids from the Okinawan sponge Hippospongia cf. metachromia. J. Org. Chem. 53, 2855–2858 (1988).

    Article  CAS  Google Scholar 

  4. Majetich, G. & Shimkus, J.M. The taiwaniaquinoids: a review. J. Nat. Prod. 73, 284–298 (2010).

    Article  CAS  Google Scholar 

  5. Suffness, M. (Ed) Taxol: Science and Applications (CRC Press, 1995).

  6. Greig, N.H., Pei, X.-F., Soncrant, T.T., Ingram, D.K. & Brossi, A. Phenserine and ring C hetero-analogues: drug candidates for the treatment of Alzheimer's disease. Med. Res. Rev. 15, 3–31 (1995).

    Article  CAS  Google Scholar 

  7. Kavanagh, F., Hervey, A. & Robbins, W.J. Antibiotic substances from basidiomycetes: VIII. Pleurotus Multilus (Fr.) Sacc. and Pleurotus Passeckerianus Pilat. Proc. Natl. Acad. Sci. USA 37, 570–574 (1951).

    Article  CAS  Google Scholar 

  8. Brady, S.F., Singh, M.P., Janso, J.E. & Clardy, J. Guanacastepene, a fungal-derived diterpene antibiotic with a new carbon skeleton. J. Am. Chem. Soc. 122, 2116–2117 (2000).

    Article  CAS  Google Scholar 

  9. Wellington, K.D., Cambie, R.C., Rutledge, P.S. & Bergquist, P.R. Chemistry of sponges. 19. novel bioactive metabolites from Hamigera tarangaensis. J. Nat. Prod. 63, 79–85 (1999).

    Article  Google Scholar 

  10. Corey, E.J. & Guzman-Perez, A. The catalytic enantioselective construction of molecules with quaternary carbon stereocenters. Angew. Chem. Int. Ed. 37, 388–401 (1998).

    Article  Google Scholar 

  11. Christoffers, J. & Baro, A. Construction of quaternary stereocenters: new perspectives through enantioselective Michael reactions. Angew. Chem. Int. Ed. 42, 1688–1690 (2003).

    Article  CAS  Google Scholar 

  12. Douglas, C.J. & Overman, L.E. Catalytic asymmetric synthesis of all-carbon quaternary stereocenters. Proc. Natl. Acad. Sci. USA 101, 5363–5367 (2004).

    Article  CAS  Google Scholar 

  13. Trost, B.M. & Jiang, C.H. Catalytic enantioselective construction of all-carbon quaternary stereocenters. Synthesis 2006, 369–396 (2006).

    Article  Google Scholar 

  14. Hawner, C. & Alexakis, A. Metal-catalyzed asymmetric conjugate addition reaction: formation of quaternary stereocenters. Chem. Commun. 46, 7295–7306 (2010).

    Article  CAS  Google Scholar 

  15. Das, J.P. & Marek, I. Enantioselective synthesis of all-carbon quaternary stereogenic centers in acyclic systems. Chem. Commun. 47, 4593–4623 (2011).

    Article  CAS  Google Scholar 

  16. Jerphagnon, T., Pizzuti, M.G., Minnaard, A.J. & Feringa, B.L. Recent advances in enantioselective copper-catalyzed 1,4-addition. Chem. Soc. Rev. 38, 1039–1075 (2009).

    Article  CAS  Google Scholar 

  17. Alexakis, A., Backvall, J.E., Krause, N., Pamies, O. & Dieguez, M. Enantioselective copper-catalyzed conjugate addition and allylic substitution reactions. Chem. Rev. 108, 2796–2823 (2008).

    Article  CAS  Google Scholar 

  18. Thaler, T. & Knochel, P. Copper-catalyzed asymmetric Michael addition of magnesium, zinc, and aluminum organometallic reagents: Efficient synthesis of chiral molecules. Angew. Chem. Int. Ed. 48, 645–648 (2009).

    Article  CAS  Google Scholar 

  19. Lee, K.S., Brown, M.K., Hird, A.W. & Hoveyda, A.H. A practical method for enantioselective synthesis of all-carbon quaternary stereogenic centers through NHC-Cu-catalyzed conjugate additions of alkyl- and arylzinc reagents to β-substituted cyclic enones. J. Am. Chem. Soc. 128, 7182–7184 (2006).

    Article  CAS  Google Scholar 

  20. Brown, M.K., May, T.L., Baxter, C.A. & Hoveyda, A.H. All-carbon quaternary stereogenic centers by enantioselective Cu-catalyzed conjugate additions promoted by a chiral N-heterocyclic carbene. Angew. Chem. Int. Ed. 46, 1097–1100 (2007).

    Article  CAS  Google Scholar 

  21. Hawner, C., Li, K.Y., Cirriez, V. & Alexakis, A. Copper-catalyzed asymmetric conjugate addition of Aryl aluminum reagents to trisubstituted enones: construction of aryl-substituted quaternary centers. Angew. Chem. Int. Ed. 47, 8211–8214 (2008).

    Article  CAS  Google Scholar 

  22. May, T.L., Brown, M.K. & Hoveyda, A.H. Enantioselective synthesis of all-carbon quaternary stereogenic centers by catalytic asymmetric conjugate additions of alkyl and aryl aluminum reagents to five-, six-, and seven-membered-ring β-substituted cyclic enones. Angew. Chem. Int. Ed. 47, 7358–7362 (2008).

    Article  CAS  Google Scholar 

  23. Martin, D., Kehrli, S., d'Augustin, M., Clavier, H., Mauduit, M. & Alexakis, A. Copper-catalyzed asymmetric conjugate addition of Grignard reagents to trisubstituted enones. Construction of all-carbon quaternary chiral centers. J. Am. Chem. Soc. 128, 8416–8417 (2006).

    Article  CAS  Google Scholar 

  24. Kehrli, S., Martin, D., Rix, D., Mauduit, M. & Alexakis, A. Formation of quaternary chiral centers by N-heterocyclic carbene-Cu-catalyzed asymmetric conjugate addition reactions with Grignard reagents on trisubstituted cyclic enones. Chemistry 16, 9890–9904 (2010).

    Article  CAS  Google Scholar 

  25. Shintani, R., Duan, W.L. & Hayashi, T. Rhodium-catalyzed asymmetric construction of quaternary carbon stereocenters: Ligand-dependent regiocontrol in the 1,4-addition to substituted maleimides. J. Am. Chem. Soc. 128, 5628–5629 (2006).

    Article  CAS  Google Scholar 

  26. Shintani, R., Tsutsumi, Y., Nagaosa, M., Nishimura, T. & Hayashi, T. Sodium tetraarylborates as effective nucleophiles in rhodium/diene-catalyzed 1,4-addition to β,β-disubstituted α,β-unsaturated ketones: catalytic asymmetric construction of quaternary carbon stereocenters. J. Am. Chem. Soc. 131, 13588–13589 (2009).

    Article  CAS  Google Scholar 

  27. Shintani, R., Takeda, M., Nishimura, T. & Hayashi, T. Chiral tetrafluorobenzobarrelenes as effective ligands for rhodium-catalyzed asymmetric 1,4-addition of arylboroxines to β,β-disubstituted α,β-unsaturated ketones. Angew. Chem. Int. Ed. 49, 3969–3971 (2010).

    Article  CAS  Google Scholar 

  28. Hahn, B.T., Tewes, F., Frohlich, R. & Glorius, F. Olefin-oxazolines (OlefOx): highly modular, easily tunable ligands for asymmetric catalysis. Angew. Chem. Int. Ed. 49, 1143–1146 (2010).

    Article  CAS  Google Scholar 

  29. Kikushima, K., Holder, J.C., Gatti, M. & Stoltz, B.M. Palladium-catalyzed asymmetric conjugate addition of arylboronic acids to five-, six-, and seven-membered β-substituted cyclic enones: enantioselective construction of all-carbon quaternary stereocenters. J. Am. Chem. Soc. 133, 6902–6905 (2011).

    Article  CAS  Google Scholar 

  30. Gottumukkala, A.L., Matcha, K., Lutz, M., de Vries, J.G. & Minnaard, A.J. Palladium-catalyzed asymmetric quaternary stereocenter formation. Chemistry 18, 6907–6914 (2012).

    Article  CAS  Google Scholar 

  31. Muller, D. & Alexakis, A. Rhodium and copper-catalyzed asymmetric conjugate addition of alkenyl nucleophiles. Chem. Commun. 48, 12037–12049 (2012).

    Article  Google Scholar 

  32. Wu, J., Mampreian, D.M. & Hoveyda, A.H. Enantioselective synthesis of nitroalkanes bearing all-carbon quaternary stereogenic centers through Cu-catalyzed asymmetric conjugate additions. J. Am. Chem. Soc. 127, 4584–4585 (2005).

    Article  CAS  Google Scholar 

  33. Hird, A.W. & Hoveyda, A.H. Catalytic enantioselective alkylations of tetrasubstituted olefins. Synthesis of all-carbon quaternary stereogenic centers through Cu-catalyzed asymmetric conjugate additions of alkylzinc reagents to enones. J. Am. Chem. Soc. 127, 14988–14989 (2005).

    Article  CAS  Google Scholar 

  34. Fillion, E. & Wilsily, A. Asymmetric synthesis of all-carbon benzylic quaternary stereocenters via Cu-catalyzed conjugate addition of dialkylzinc reagents to 5-(1-arylalkylidene) Meldrum's acids. J. Am. Chem. Soc. 128, 2774–2775 (2006).

    Article  CAS  Google Scholar 

  35. Dumas, A.M. & Fillion, E. Meldrum's acids and 5-alkylidene Meldrum's acids in catalytic carbon-carbon bond-forming processes. Acc. Chem. Res. 43, 440–454 (2010).

    Article  CAS  Google Scholar 

  36. d'Augustin, M., Palais, L. & Alexakis, A. Enantioselective copper-catalyzed conjugate addition to trisubstituted cyclohexenones: construction of stereogenic quaternary centers. Angew. Chem. Int. Ed. 44, 1376–1378 (2005).

    Article  CAS  Google Scholar 

  37. Palais, L. et al. SimplePhos monodentate ligands: synthesis and application in copper-catalyzed reactions. Angew. Chem. Int. Ed. 46, 7462–7465 (2007).

    Article  CAS  Google Scholar 

  38. Vuagnoux-d'Augustin, M. & Alexakis, A. Copper-catalyzed asymmetric conjugate addition of trialkylaluminium reagents to trisubstituted enones: construction of chiral quaternary centers. Chemistry 13, 9647–9662 (2007).

    Article  CAS  Google Scholar 

  39. Palais, L. & Alexakis, A. Copper-catalyzed asymmetric conjugate addition with chiral SimplePhos ligands. Chemistry 15, 10473–10485 (2009).

    Article  CAS  Google Scholar 

  40. Mendoza, A., Ishihara, Y. & Baran, P.S. Scalable enantioselective total synthesis of taxanes. Nat. Chem. 4, 21–25 (2012).

    Article  CAS  Google Scholar 

  41. Henon, H., Mauduit, M. & Alexakis, A. Regiodivergent 1,4 versus 1,6 asymmetric copper-catalyzed conjugate addition. Angew. Chem. Int. Ed. 47, 9122–9124 (2008).

    Article  CAS  Google Scholar 

  42. Matsumoto, Y., Yamada, K.I. & Tomioka, K. C(2) symmetric chiral NHC ligand for asymmetric quaternary carbon constructing copper-catalyzed conjugate addition of Grignard reagents to 3-substituted cyclohexenones. J. Org. Chem. 73, 4578–4581 (2008).

    Article  CAS  Google Scholar 

  43. Germain, N., Magrez, M., Kehrli, S., Mauduit, M. & Alexakis, A. Chiral NHC ligands for the copper-catalyzed asymmetric conjugate addition of Grignard reagents. Eur. J. Org. Chem. 5301–5306 (2012).

  44. Tissot, M. et al. Formation of quaternary stereogenic centers by NHC-Cu-catalyzed asymmetric conjugate addition reactions with Grignard reagents on polyconjugated cyclic enones. Chemistry 18, 8731–8747 (2012).

    Article  CAS  Google Scholar 

  45. Mak, J.Y.W. & Williams, C.M. Enantioselective total synthesis of (−)-neovibsanin G and (−)-14-epi-neovibsanin G. Chem. Commun. 48, 287–289 (2012).

    Article  CAS  Google Scholar 

  46. Brown, M.K. & Hoveyda, A.H. Enantioselective total synthesis of clavirolide C. applications of Cu-catalyzed asymmetric conjugate additions and Ru-catalyzed ring-closing metathesis. J. Am. Chem. Soc. 130, 12904–12906 (2008).

    Article  CAS  Google Scholar 

  47. Vuagnoux-d'Augustin, M., Kehrli, S. & Alexakis, A. Enantioselective copper-catalyzed conjugate addition to 2- or 3-substituted cyclopent-2-en-1-ones: construction of stereogenic quaternary carbon centers. Synlett 2057–2060 (2007).

  48. Howell, G.P. Asymmetric and diastereoselective conjugate addition reactions: C-C bond formation at large scale. Org. Proc. Res. Develop. 16, 1258–1272 (2012).

    Article  CAS  Google Scholar 

  49. Young, I.S. & Baran, P.S. Protecting-group-free synthesis as an opportunity for invention. Nat. Chem. 1, 193–205 (2009).

    Article  CAS  Google Scholar 

  50. Maksymowicz, R.M., Roth, P.M.C. & Fletcher, S.P. Catalytic asymmetric carbon-carbon bond formation using alkenes as alkylmetal equivalents. Nat. Chem. 4, 649–654 (2012).

    Article  CAS  Google Scholar 

  51. Maksymowicz, R.M., Roth, P.M.C., Thompson, A.L. & Fletcher, S.P. Hydrometallation-asymmetric conjugate addition: application to complex molecule synthesis. Chem. Commun. 49, 4211–4213 (2013).

    Article  CAS  Google Scholar 

  52. Sidera, M., Roth, P.M.C., Maksymowicz, R.M. & Fletcher, S.P. Formation of quaternary centers by copper-catalyzed asymmetric conjugate addition of alkylzirconium reagents. Angew. Chem. Int. Ed. 52, 7995–7999 (2013).

    Article  CAS  Google Scholar 

  53. Maksymowicz, R.M., Sidera, M., Roth, P.M.C. & Fletcher, S.P. A convenient catalytic asymmetric conjugate addition reaction to enones using alkylzirconium reagents. Synthesis 45, 2662–2668 (2013).

    Article  CAS  Google Scholar 

  54. Sebesta, R. Asymmetric copper-catalyzed 1,4-additions and allylic substitutions with nucleophiles formed by the hydrometalation of alkenes. ChemCatChem 5, 1069–1071 (2013).

    Article  CAS  Google Scholar 

  55. Schwartz, J. & Labinger, J.A. Hydrozirconation: new transition-metal reagent for organic-synthesis. Angew. Chem. Int. Ed. 15, 333–340 (1976).

    Article  Google Scholar 

  56. Buchwald, S.L., LaMaire, S.J. & Nielsen, R.B. Schwartz reagent. Org. Synth. 71, 77–82 (1993).

    Article  CAS  Google Scholar 

  57. Yoshida, M., Ohmiya, H. & Sawamura, M. Enantioselective conjugate addition of alkylboranes catalyzed by a copper-N-heterocyclic carbene complex. J. Am. Chem. Soc. 134, 11896–11899 (2012).

    Article  CAS  Google Scholar 

  58. Teichert, J.F. & Feringa, B.L. Phosphoramidites: privileged ligands in asymmetric catalysis. Angew. Chem. Int. Ed. 49, 2486–2528 (2010).

    Article  CAS  Google Scholar 

  59. Vij, A., Zheng, Y.Y., Kirchmeier, R.I. & Shreeve, J.M. Electrophilic addition and substitution reactions of bis(trifluoromethyl)sulfonyl)amide and its N-chloro derivative. Inorg. Chem. 33, 3281–3288 (1994).

    Article  CAS  Google Scholar 

  60. Wipf, P. & Smitrovich, J.H. Transmetalation reactions of alkylzirconocenes—copper-catalyzed conjugate addition to enones. J. Org. Chem. 56, 6494–6496 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the UK Engineering and Physical Sciences Research Council for generous support of this research in the form of a Career Acceleration Fellowship to S.P.F. (EP/H003711/1).

Author information

Authors and Affiliations

Authors

Contributions

P.M.C.R., M.S. and R.M.M. conducted the experiments. All authors designed the experiments and analyzed the data. S.P.F. guided the research. P.M.C.R., M.S. and S.P.F. wrote the manuscript. All authors contributed to discussions.

Corresponding author

Correspondence to Stephen P Fletcher.

Ethics declarations

Competing interests

The authors are all named as inventors on a UK patent application filed by Isis Innovation, which is the technology transfer arm of the University of Oxford.

Supplementary information

Supplementary Methods

Synthesis of diphenyl isopropyl binol phosphoramidite ligand A (PDF 106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, P., Sidera, M., Maksymowicz, R. et al. Copper-catalyzed asymmetric conjugate addition of alkylzirconium reagents to cyclic enones to form quaternary centers. Nat Protoc 9, 104–111 (2014). https://doi.org/10.1038/nprot.2013.169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.169

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing