Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Production of highly potent recombinant siRNAs in Escherichia coli

Abstract

We recently invented a method to produce highly potent siRNAs in Escherichia coli, based on the serendipitous discovery that ectopic expression of p19, a plant viral siRNA-binding protein, stabilizes otherwise unstable bacterial siRNAs, which we named pro-siRNAs for prokaryotic siRNAs. We present a detailed protocol describing how to produce pro-siRNAs for efficiently knocking down any gene, beginning with the design of a pro-siRNA expression plasmid and ending with siRNA purification. This protocol uses one plasmid to co-express a recombinant His-tagged p19 protein and a long hairpin RNA containing sense and antisense sequences of the target gene. pro-siRNAs are isolated and purified using nickel beads and HPLC, using methods used to produce recombinant proteins. Once a pro-siRNA plasmid is obtained, production of purified pro-siRNAs takes a few days. The pro-siRNA technique provides a reliable and renewable source of siRNAs, and it can be implemented in any laboratory whose members are skilled in routine molecular biology techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Workflow of the protocol to produce pro-siRNAs from E. coli.
Figure 2: Design and analysis of pro-siRNA plasmid.
Figure 3: Purification of pro-siRNA.

Similar content being viewed by others

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  Google Scholar 

  2. Hamilton, A.J. & Baulcombe, D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999).

    Article  CAS  Google Scholar 

  3. Knight, S.W. & Bass, B.L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269–2271 (2001).

    Article  CAS  Google Scholar 

  4. Bohmert, K. et al. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 17, 170–180 (1998).

    Article  CAS  Google Scholar 

  5. Carmell, M.A., Xuan, Z., Zhang, M.Q. & Hannon, G.J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733–2742 (2002).

    Article  CAS  Google Scholar 

  6. Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004).

    Article  CAS  Google Scholar 

  7. Ding, S.W. & Voinnet, O. Antiviral immunity directed by small RNAs. Cell 130, 413–426 (2007).

    Article  CAS  Google Scholar 

  8. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  9. Caplen, N.J., Parrish, S., Imani, F., Fire, A. & Morgan, R.A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA 98, 9742–9747 (2001).

    Article  CAS  Google Scholar 

  10. Yang, D. et al. Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 9942–9947 (2002).

    Article  CAS  Google Scholar 

  11. Myers, J.W., Jones, J.T., Meyer, T. & Ferrell, J.E. Jr. Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing. Nat. Biotechnol. 21, 324–328 (2003).

    Article  CAS  Google Scholar 

  12. Kittler, R. et al. Genome-wide resources of endoribonuclease-prepared short interfering RNAs for specific loss-of-function studies. Nat. Methods 4, 337–344 (2007).

    Article  CAS  Google Scholar 

  13. Myers, J.W. et al. Minimizing off-target effects by using diced siRNAs for RNA interference. J. RNAi Gene Silencing 2, 181–194 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Stewart, S.A. et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9, 493–501 (2003).

    Article  CAS  Google Scholar 

  15. Zhao, H.F. et al. High-throughput screening of effective siRNAs from RNAi libraries delivered via bacterial invasion. Nat. Methods 2, 967–973 (2005).

    Article  CAS  Google Scholar 

  16. Li, Z., Fortin, Y. & Shen, S.H. Forward and robust selection of the most potent and noncellular toxic siRNAs from RNAi libraries. Nucleic Acids Res. 37, e8 (2009).

    Article  Google Scholar 

  17. Xiang, S., Fruehauf, J. & Li, C.J. Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat. Biotechnol. 24, 697–702 (2006).

    Article  CAS  Google Scholar 

  18. Tenllado, F., Martinez-Garcia, B., Vargas, M. & Diaz-Ruiz, J.R. Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnol. 3, 3 (2003).

    Article  Google Scholar 

  19. Aalto, A.P. et al. Large-scale production of dsRNA and siRNA pools for RNA interference utilizing bacteriophage phi6 RNA-dependent RNA polymerase. RNA 13, 422–429 (2007).

    Article  CAS  Google Scholar 

  20. Huang, L. et al. Efficient and specific gene knockdown by small interfering RNAs produced in bacteria. Nat. Biotechnol. 31, 350–356 (2013).

    Article  CAS  Google Scholar 

  21. Blau, J.A. & McManus, M.T. Renewable RNAi. Nat. Biotechnol. 31, 319–320 (2013).

    Article  CAS  Google Scholar 

  22. Voinnet, O., Pinto, Y.M. & Baulcombe, D.C. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad. Sci. USA 96, 14147–14152 (1999).

    Article  CAS  Google Scholar 

  23. Silhavy, D. et al. A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J. 21, 3070–3080 (2002).

    Article  CAS  Google Scholar 

  24. Ye, K., Malinina, L. & Patel, D.J. Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature 426, 874–878 (2003).

    Article  CAS  Google Scholar 

  25. Jin, J., Cid, M., Poole, C.B. & McReynolds, L.A. Protein mediated miRNA detection and siRNA enrichment using p19. Biotechniques 48, xvii–xxiii (2010).

    Article  CAS  Google Scholar 

  26. Xiao, J., Feehery, C.E., Tzertzinis, G. & Maina, C.V. E. coli RNase III(E38A) generates discrete-sized products from long dsRNA. RNA 15, 984–991 (2009).

    Article  CAS  Google Scholar 

  27. Smith, D.B. & Corcoran, L.M. Expression and purification of glutathione-S-transferase fusion proteins. Curr. Protoc. Mol. Biol. 28, 16.7.1–16.7.7 (2001).

    Google Scholar 

  28. Henschel, A., Buchholz, F. & Habermann, B. DEQOR: a web-based tool for the design and quality control of siRNAs. Nucleic Acids Res. 32, W113–W120 (2004).

    Article  CAS  Google Scholar 

  29. Surendranath, V., Theis, M., Habermann, B.H. & Buchholz, F. Designing efficient and specific endoribonuclease-prepared siRNAs. Methods Mol. Biol. 942, 193–204 (2013).

    Article  CAS  Google Scholar 

  30. Lee, S.K. et al. Lentiviral delivery of short hairpin RNAs protects CD4 T cells from multiple clades and primary isolates of HIV. Blood 106, 818–826 (2005).

    Article  CAS  Google Scholar 

  31. Boese, Q. et al. Mechanistic insights aid computational short interfering RNA design. Methods Enzymol. 392, 73–96 (2005).

    Article  CAS  Google Scholar 

  32. Chen, P.Y. et al. Strand-specific 5′-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. RNA 14, 263–274 (2008).

    Article  CAS  Google Scholar 

  33. Jackson, A.L. et al. Position-specific chemical modification of siRNAs reduces 'off-target' transcript silencing. RNA 12, 1197–1205 (2006).

    Article  CAS  Google Scholar 

  34. Jackson, A.L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637 (2003).

    Article  CAS  Google Scholar 

  35. Robbins, M. et al. 2′-O-methyl-modified RNAs act as TLR7 antagonists. Mol. Ther. 15, 1663–1669 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Carrington (Donald Danforth Plant Science Center) for providing the p19 clone. We also thank J. Jin and L. McReynolds from New England Biolabs and P. Deighan and E. Kiner from Harvard Medical School for assistance and advice in establishing this method. We also thank Lieberman Laboratory members for technical assistance. This work was supported by a US National Institutes of Health grant (no. AI087431; J.L.) and a GlaxoSmithKline(GSK)-Immune Disease Institute(IDI) Alliance fellowship (L.H.).

Author information

Authors and Affiliations

Authors

Contributions

L.H. designed the protocol with suggestions from J.L. and L.H., and J.L. wrote the paper.

Corresponding authors

Correspondence to Linfeng Huang or Judy Lieberman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L., Lieberman, J. Production of highly potent recombinant siRNAs in Escherichia coli. Nat Protoc 8, 2325–2336 (2013). https://doi.org/10.1038/nprot.2013.149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.149

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing