Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Raft-like membranes from the trans-Golgi network and endosomal compartments

Abstract

This article describes a procedure to prepare a raft-like intracellular membrane fraction enriched for the trans-Golgi network (TGN) and endosomal compartments. The initial step in this technique involves cell disruption by homogenization, followed by clearance of the plasma membrane, late endosomes, mitochondria and the endoplasmic reticulum by differential sedimentation. Carbonate treatment, sonication and sucrose density-gradient ultracentrifugation are subsequently used to isolate the target membranes. The isolated subcellular fraction contains less than 1% of the total cellular proteins, but it is highly enriched for syntaxin-6 and Rab11. Typically, 40–60% of the cellular pool of GM1 glycosphingolipid and 10–20% of the total cellular cholesterol cofractionate with this buoyant membrane fraction. Given the role of GM1 as a cell-surface receptor for the cholera toxin and that levels of both GM1 and cholesterol in the TGN-endosomal compartment are upregulated in some inherited diseases, this protocol can potentially be applied to the analysis of disease-associated changes to GM1-enriched intracellular membranes. The isolated membranes are very well separated from caveolin-rich domains of the plasma membrane, the TGN and recycling endosomes. The entire protocol can be completed in as little as 1 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Typical distribution of cholesterol and GM1 ganglioside lipids in the sucrose density-gradient fractions 1–12 and the p8000 and p1000 pellet fractions.
Figure 3: Typical sucrose density profile of the sucrose step gradient (fractions 1–12), as determined by measurements of refractive index.
Figure 4: Western blots illustrating the typical distributions of proteins targeted to different subcellular membranes.

Similar content being viewed by others

References

  1. Waugh, M.G., Chu, K.M., Clayton, E.L., Minogue, S. & Hsuan, J.J. Detergent-free isolation and characterization of cholesterol-rich membrane domains from trans-Golgi network vesicles. J. Lipid Res. 52, 582–589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dupree, P., Parton, R.G., Raposo, G., Kurzchalia, T.V. & Simons, K. Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO J. 12, 1597–1605 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pulvirenti, T. et al. A traffic-activated Golgi-based signalling circuit coordinates the secretory pathway. Nat. Cell Biol. 10, 912–922 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Anitei, M. et al. Protein complexes containing CYFIP/Sra/PIR121 coordinate Arf1 and Rac1 signalling during clathrin-AP-1-coated carrier biogenesis at the TGN. Nat. Cell Biol. 12, 330–340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. De Matteis, M.A. & Luini, A. Exiting the Golgi complex. Nat. Rev. Mol. Cell Biol. 9, 273–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Choudhury, A. et al. Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. J. Clin. Invest. 109, 1541–1550 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gokool, S., Tattersall, D. & Seaman, M.N. EHD1 interacts with retromer to stabilize SNX1 tubules and facilitate endosome-to-Golgi retrieval. Traffic 8, 1873–1886 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Iversen, T.G. et al. Endosome to Golgi transport of ricin is independent of clathrin and of the Rab9- and Rab11-GTPases. Mol. Biol. Cell 12, 2099–20107 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pike, L.J., Han, X., Chung, K.N. & Gross, R.W. Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 41, 2075–2088 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Khosravi-Far, R. et al. Isoprenoid modification of rab proteins terminating in CC or CXC motifs. Proc. Natl. Acad. Sci. USA 88, 6264–6268 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klotzsch, E. & Schutz, G.J. A critical survey of methods to detect plasma membrane rafts. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120033 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sonnino, S. & Prinetti, A. Membrane domains and the 'lipid raft' concept. Curr. Med. Chem. 20, 4–21 (2013).

    CAS  PubMed  Google Scholar 

  14. Reeves, V.L., Thomas, C.M. & Smart, E.J. Lipid rafts, caveolae and GPI-linked proteins. Adv. Exp. Med. Biol. 729, 3–13 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Bock, J.B., Klumperman, J., Davanger, S. & Scheller, R.H. Syntaxin 6 functions in trans-Golgi network vesicle trafficking. Mol. Biol. Cell 8, 1261–1271 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuliawat, R. et al. Syntaxin-6 SNARE involvement in secretory and endocytic pathways of cultured pancreatic beta cells. Mol. Biol. Cell 15, 1690–1701 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, Y.J. et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114, 299–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Simonsen, A., Gaullier, J.M., D'Arrigo, A. & Stenmark, H. The Rab5 effector EEA1 interacts directly with syntaxin-6. J. Biol. Chem. 274, 28857–28860 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Balla, A., Tuymetova, G., Barshishat, M., Geiszt, M. & Balla, T. Characterization of type II phosphatidylinositol 4-kinase isoforms reveals association of the enzymes with endosomal vesicular compartments. J. Biol. Chem. 277, 20041–20050 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Minogue, S. et al. Phosphatidylinositol 4-kinase is required for endosomal trafficking and degradation of the EGF receptor. J. Cell Sci. 119, 571–581 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Waugh, M.G. et al. Localization of a highly active pool of type II phosphatidylinositol 4-kinase in a p97/valosin-containing-protein-rich fraction of the endoplasmic reticulum. Biochem. J. 373, 57–63 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, W., Feng, Y., Chen, D. & Wandinger-Ness, A. Rab11 is required for trans-Golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor. Mol. Biol. Cell 9, 3241–3257 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ishida-Yamamoto, A., Kishibe, M., Takahashi, H. & Iizuka, H. Rab11 is associated with epidermal lamellar granules. J. Invest. Dermatol. 127, 2166–2170 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Ullrich, O., Reinsch, S., Urbe, S., Zerial, M. & Parton, R.G. Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol. 135, 913–924 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Urbe, S., Huber, L.A., Zerial, M., Tooze, S.A. & Parton, R.G. Rab11, a small GTPase associated with both constitutive and regulated secretory pathways in PC12 cells. FEBS Lett. 334, 175–182 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Wilcke, M. et al. Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-Golgi network. J. Cell Biol. 151, 1207–1220 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, H. et al. The asymmetrical structure of Golgi apparatus membranes revealed by in situ atomic force microscope. PLoS ONE 8, e61596 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Minogue, S. et al. Relationship between phosphatidylinositol 4-phosphate synthesis, membrane organization, and lateral diffusion of PI4KIIα at the trans-Golgi network. J. Lipid Res. 51, 2314–2324 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Waugh, M.G., Minogue, S., Chotai, D., Berditchevski, F. & Hsuan, J.J. Lipid and peptide control of phosphatidylinositol 4-kinase IIα activity on Golgi-endosomal rafts. J. Biol. Chem. 281, 3757–3763 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Banerji, S. et al. Oxysterol binding protein-dependent activation of sphingomyelin synthesis in the Golgi apparatus requires phosphatidylinositol 4-kinase IIα. Mol. Biol. Cell 21, 4141–4150 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu, D. et al. Phosphatidylinositol 4-kinase IIα is palmitoylated by Golgi-localized palmitoyltransferases in cholesterol-dependent manner. J. Biol. Chem. 287, 21856–21865 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chang, J.C. & Rosenthal, S.J. Visualization of lipid raft membrane compartmentalization in living RN46A neuronal cells using single quantum-dot tracking. ACS Chem. Neurosci. 3, 737–743 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mori, K., Mahmood, M.I., Neya, S., Matsuzaki, K. & Hoshino, T. Formation of GM1 ganglioside clusters on the lipid membrane containing sphingomyeline and cholesterol. J. Phys. Chem. B 116, 5111–5121 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Fujita, A., Cheng, J. & Fujimoto, T. Segregation of GM1 and GM3 clusters in the cell membrane depends on the intact actin cytoskeleton. Biochim. Biophys. Acta 1791, 388–396 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Fujita, A. et al. Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol. Biol. Cell 18, 2112–2122 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chinnapen, D.J. et al. Lipid sorting by ceramide structure from plasma membrane to ER for the cholera toxin receptor ganglioside GM1. Dev. Cell 23, 573–586 (2013).

    Article  CAS  Google Scholar 

  37. Jobling, M.G., Yang, Z., Kam, W.R., Lencer, W.I. & Holmes, R.K. A single native ganglioside GM1-binding site is sufficient for cholera toxin to bind to cells and complete the intoxication pathway. MBio 3, e00401–e00412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gulati, S., Liu, Y., Munkacsi, A.B., Wilcox, L. & Sturley, S.L. Sterols and sphingolipids: dynamic duo or partners in crime? Prog. Lipid. Res. 49, 353–365 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Holtta-Vuori, M., Tanhuanpaa, K., Mobius, W., Somerharju, P. & Ikonen, E. Modulation of cellular cholesterol transport and homeostasis by Rab11. Mol. Biol. Cell 13, 3107–3122 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rosenbaum, A.I., Zhang, G., Warren, J.D. & Maxfield, F.R. Endocytosis of β-cyclodextrins is responsible for cholesterol reduction in Niemann-Pick type C mutant cells. Proc. Natl. Acad. Sci. USA 107, 5477–5482 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vance, J.E. Lipid imbalance in the neurological disorder, Niemann-Pick C disease. FEBS Lett. 580, 5518–5524 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Erickson, R.P. Current controversies in Niemann-Pick C1 disease: steroids or gangliosides; neurons or neurons and glia. J. Appl. Genet. 54, 215–224 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Schneider, J.S. et al. A randomized, controlled, delayed start trial of GM1 ganglioside in treated Parkinson's disease patients. J. Neurol. Sci. 324, 140–148 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Schneider, J.S., Sendek, S., Daskalakis, C. & Cambi, F. GM1 ganglioside in Parkinson's disease: results of a five year open study. J. Neurol. Sci. 292, 45–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Vetrivel, K.S. & Thinakaran, G. Membrane rafts in Alzheimer's disease β-amyloid production. Biochim. Biophys. Acta 1801, 860–867 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rajendran, L. et al. Efficient inhibition of the Alzheimer's disease β-secretase by membrane targeting. Science 320, 520–523 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Vetrivel, K.S. et al. Association of γ-secretase with lipid rafts in post-Golgi and endosome membranes. J. Biol. Chem. 279, 44945–44954 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Schnitzer, J.E., McIntosh, D.P., Dvorak, A.M., Liu, J. & Oh, P. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 269, 1435–1439 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Schnitzer, J.E., Oh, P., Jacobson, B.S. & Dvorak, A.M. Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca2+-ATPase, and inositol trisphosphate receptor. Proc. Natl. Acad. Sci. USA 92, 1759–1763 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smart, E.J., Ying, Y.S., Mineo, C. & Anderson, R.G. A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc. Natl. Acad. Sci. USA 92, 10104–10108 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Song, K.S. et al. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J. Biol. Chem. 271, 9690–9697 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Stan, R.V. et al. Immunoisolation and partial characterization of endothelial plasmalemmal vesicles (caveolae). Mol. Biol. Cell 8, 595–605 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Macdonald, J.L. & Pike, L.J. A simplified method for the preparation of detergent-free lipid rafts. J. Lipid. Res. 46, 1061–1067 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Waugh, M.G. & Hsuan, J.J. Preparation of membrane rafts. Methods Mol. Biol. 462, 403–414 (2009).

    CAS  PubMed  Google Scholar 

  55. Lingwood, D. & Simons, K. Detergent resistance as a tool in membrane research. Nat. Protoc. 2, 2159–2165 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Mukherjee, S., Zha, X., Tabas, I. & Maxfield, F.R. Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys. J. 75, 1915–1925 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Klemm, R.W. et al. Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J. Cell Biol. 185, 601–612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dhanvantari, S. & Loh, Y.P. Lipid raft association of carboxypeptidase E is necessary for its function as a regulated secretory pathway sorting receptor. J. Biol. Chem. 275, 29887–29893 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Keller, P. & Simons, K. Cholesterol is required for surface transport of influenza virus hemagglutinin. J. Cell Biol. 140, 1357–1367 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ying, M., Grimmer, S., Iversen, T.G., Van Deurs, B. & Sandvig, K. Cholesterol loading induces a block in the exit of VSVG from the TGN. Traffic 4, 772–784 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Waugh, M.G., Lawson, D., Tan, S.K. & Hsuan, J.J. Phosphatidylinositol 4-phosphate synthesis in immunoisolated caveolae-like vesicles and low buoyant density non-caveolar membranes. J. Biol. Chem. 273, 17115–17121 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Weixel, K.M., Blumental-Perry, A., Watkins, S.C., Aridor, M. & Weisz, O.A. Distinct Golgi populations of phosphatidylinositol 4-phosphate regulated by phosphatidylinositol 4-kinases. J. Biol. Chem. 280, 10501–10508 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Clayton, E.L., Minogue, S. & Waugh, M.G. Phosphatidylinositol 4-kinases and PI4P metabolism in the nervous system: roles in psychiatric and neurological diseases. Mol. Neurobiol. 47, 361–372 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Watson, R.T. & Pessin, J.E. Functional cooperation of two independent targeting domains in syntaxin 6 is required for its efficient localization in the trans-Golgi network of 3T3L1 adipocytes. J. Biol. Chem. 275, 1261–1268 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. de Graaf, P. et al. Phosphatidylinositol 4-kinaseβ is critical for functional association of rab11 with the Golgi complex. Mol. Biol. Cell 15, 2038–2047 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Craige, B., Salazar, G. & Faundez, V. Phosphatidylinositol-4-kinase type II α contains an AP-3 sorting motif and a kinase domain that are both required for endosome traffic. Mol. Biol. Cell 19, 1415–1426 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Waugh, M.G., Minogue, S., Anderson, J.S., dos Santos, M. & Hsuan, J.J. Signalling and non-caveolar rafts. Biochem. Soc. Trans. 29, 509–511 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Waugh, M.G., Minogue, S., Blumenkrantz, D., Anderson, J.S. & Hsuan, J.J. Identification and characterization of differentially active pools of type IIα phosphatidylinositol 4-kinase activity in unstimulated A431 cells. Biochem. J. 376, 497–503 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Barylko, B. et al. Palmitoylation controls the catalytic activity and subcellular distribution of phosphatidylinositol 4-kinase IIα. J. Biol. Chem. 284, 9994–10003 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Moreno-Smith, M. et al. ATP11B mediates platinum resistance in ovarian cancer. J. Clin. Invest. 123, 2119–2130 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cunningham, M.R., Nisar, S.P., Cooke, A.E., Emery, E.D. & Mundell, S.J. Differential endosomal sorting of a novel P2Y12 purinoreceptor mutant. Traffic 14, 585–598 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Waugh, M.G., Minogue, S., Clayton, E.L. & Hsuan, J.J. CDP-diacylglycerol phospholipid synthesis in detergent-soluble, non-raft, membrane microdomains of the endoplasmic reticulum. J. Lipid Res. 52, 2148–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Minogue, S. & Waugh, M.G. Lipid rafts, microdomain heterogeneity and inter-organelle contacts: impacts on membrane preparation for proteomic studies. Biol. Cell 104, 618–627 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Chamberlain, L.H. Detergents as tools for the purification and classification of lipid rafts. FEBS Lett. 559, 1–5 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Owen, D.M., Magenau, A., Williamson, D. & Gaus, K. The lipid raft hypothesis revisited—new insights on raft composition and function from super-resolution fluorescence microscopy. Bioessays 34, 739–747 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Suzuki, K.G. Lipid rafts generate digital-like signal transduction in cell plasma membranes. Biotechnol. J. 7, 753–761 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Larocca, T.J. et al. Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. PLoS Pathog. 9, e1003353 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Soula, H.A., Coulon, A. & Beslon, G. Membrane microdomains emergence through non-homogeneous diffusion. BMC Biophys. 5, 6 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sobo, K., Chevallier, J., Parton, R.G., Gruenberg, J. & van der Goot, F.G. Diversity of raft-like domains in late endosomes. PLoS ONE 2, e391 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Williamson, R. et al. Isolation of detergent resistant microdomains from cultured neurons: detergent dependent alterations in protein composition. BMC Neurosci. 11, 120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A. & Simons, K. Resistance of cell membranes to different detergents. Proc. Natl. Acad. Sci. USA 100, 5795–5800 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dawson, R.M.C., Elliot, D.C., Elliot, W.H. & Jones, K.M. Data for Biochemical Research (Oxford Science Publications, 1986).

  83. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

  84. Panfoli, I. et al. A blue dive: from 'blue fingers' to 'blue silver'. A comparative overview of staining methods for in-gel proteomics. Expert Rev. Proteomics 9, 627–634 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Kim, C.S., Seo, J.H. & Cha, H.J. Functional interaction analysis of GM1-related carbohydrates and Vibrio cholerae toxins using carbohydrate microarray. Anal. Chem. 84, 6884–6890 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Lauer, S., Goldstein, B., Nolan, R.L. & Nolan, J.P. Analysis of cholera toxin-ganglioside interactions by flow cytometry. Biochemistry 41, 1742–1751 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. MacKenzie, C.R., Hirama, T., Lee, K.K., Altman, E. & Young, N.M. Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance. J. Biol. Chem. 272, 5533–5538 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Kuziemko, G.M., Stroh, M. & Stevens, R.C. Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance. Biochemistry 35, 6375–6384 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Levery, S.B. Glycosphingolipid structural analysis and glycosphingolipidomics. Methods Enzymol. 405, 300–369 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Nakamura, N. et al. Characterization of a cis-Golgi matrix protein, GM130. J. Cell Biol. 131, 1715–1726 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Pan, S. et al. Golgi localization of ERManI defines spatial separation of the mammalian glycoprotein quality control system. Mol. Biol. Cell 22, 2810–2822 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Parton, R.G. Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J. Histochem. Cytochem. 42, 155–166 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Patki, V. et al. Identification of an early endosomal protein regulated by phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. USA 94, 7326–7330 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ikonen, E., Fiedler, K., Parton, R.G. & Simons, K. Prohibitin, an antiproliferative protein, is localized to mitochondria. FEBS Lett. 358, 273–277 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Ahluwalia, N., Bergeron, J.J., Wada, I., Degen, E. & Williams, D.B. The p88 molecular chaperone is identical to the endoplasmic reticulum membrane protein, calnexin. J. Biol. Chem. 267, 10914–10918 (1992).

    CAS  PubMed  Google Scholar 

  97. Fujita, H., Tuma, P.L., Finnegan, C.M., Locco, L. & Hubbard, A.L. Endogenous syntaxins 2, 3 and 4 exhibit distinct but overlapping patterns of expression at the hepatocyte plasma membrane. Biochem. J. 329 (Part 3): 527–538 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Band, A.M. et al. Endogenous plasma membrane t-SNARE syntaxin 4 is present in rab11 positive endosomal membranes and associates with cortical actin cytoskeleton. FEBS Lett. 531, 513–519 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Evesson, F.J. et al. Reduced plasma membrane expression of dysferlin mutants is attributed to accelerated endocytosis via a syntaxin-4-associated pathway. J. Biol. Chem. 285, 28529–28539 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gagescu, R. et al. The recycling endosome of Madin-Darby canine kidney cells is a mildly acidic compartment rich in raft components. Mol. Biol. Cell 11, 2775–2791 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Volchuk, A. et al. Syntaxin 4 in 3T3-L1 adipocytes: regulation by insulin and participation in insulin-dependent glucose transport. Mol. Biol. Cell 7, 1075–1082 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mandon, B., Chou, C.L., Nielsen, S. & Knepper, M.A. Syntaxin-4 is localized to the apical plasma membrane of rat renal collecting duct cells: possible role in aquaporin-2 trafficking. J. Clin. Invest. 98, 906–913 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support from the Royal Free Charity is gratefully acknowledged. I thank J. Hsuan and M. Pinzani for the use of laboratory equipment and facilities, and K.M.E. Chu for assistance with Figure 1.

Author information

Authors and Affiliations

Authors

Contributions

M.G.W. designed and performed all experiments, analyzed the data and wrote the paper.

Corresponding author

Correspondence to Mark G Waugh.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waugh, M. Raft-like membranes from the trans-Golgi network and endosomal compartments. Nat Protoc 8, 2429–2439 (2013). https://doi.org/10.1038/nprot.2013.148

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.148

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing