Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generating whole bacterial genome sequences of low-abundance species from complex samples with IMS-MDA

Abstract

The study of bacterial populations using whole-genome sequencing is of considerable scientific and clinical interest. However, obtaining bacterial genomic information is not always trivial: the target bacteria may be difficult to culture or uncultured, and they may be found within samples containing complex mixtures of other contaminating microbes and/or host cells, from which it is very difficult to derive robust sequencing data. Here we describe our procedure to generate sufficient DNA for whole-genome sequencing from clinical samples and without the need for culture, as successfully used on the difficult-to-culture, obligate intracellular pathogen Chlamydia trachomatis. Our protocol combines immunomagnetic separation (IMS) for targeted bacterial enrichment with multiple displacement amplification (MDA) for whole-genome amplification (WGA), which is followed by high-throughput sequencing. Compared with other techniques that might be used to generate such data, IMS-MDA is an inexpensive, low-technology and highly transferable process that provides amplified genomic DNA for sequencing from target bacteria in under 5 h, with little hands-on time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the immunomagnetic separation and multiple displacement amplification (IMS-MDA) procedure.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Mutreja, A. et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477, 462–465 (2011).

    Article  CAS  Google Scholar 

  2. Bryant, J.M. et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet 381, 1551–1560 (2013).

    Article  CAS  Google Scholar 

  3. Harrison, E.M. et al. Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC. EMBO Mol. Med. 5, 509–515 (2013).

    Article  CAS  Google Scholar 

  4. Croucher, N.J., Harris, S.R., Grad, Y.H. & Hanage, W.P. Bacterial genomes in epidemiology—present and future. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120202 (2013).

    Article  Google Scholar 

  5. Holden, M.T. et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 23, 653–664 (2013).

    Article  CAS  Google Scholar 

  6. He, M. et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat. Genet. 45, 109–113 (2013).

    Article  CAS  Google Scholar 

  7. Eyre, D.W. et al. Detection of mixed infection from bacterial whole genome sequence data allows assessment of its role in Clostridium difficile transmission. PLoS Comput. Biol. 9, e1003059 (2013).

    Article  CAS  Google Scholar 

  8. Seth-Smith, H.M.B. et al. Whole-genome sequences of Chlamydia trachomatis directly from clinical samples without culture. Genome Res. 23, 855–866 (2013).

    Article  CAS  Google Scholar 

  9. World Health Organization. Prevalence and Incidence of Selected Sexually Transmitted Infections (World Health Organization, Geneva, 2011).

  10. Global WHO alliance for the elimination of blinding trachoma by 2020. in Weekly Epidemiological Report Vol. 17 161–168 (World Health Organisation, Geneva, 2012).

  11. Dean, D. et al. Predicting phenotype and emerging strains among Chlamydia trachomatis infections. Emerg. Infect. Dis. 15, 1385–1394 (2009).

    Article  CAS  Google Scholar 

  12. Klint, M. et al. High-resolution genotyping of Chlamydia trachomatis strains by multilocus sequence analysis. J. Clin. Microbiol. 45, 1410–1414 (2007).

    Article  CAS  Google Scholar 

  13. Pannekoek, Y. et al. Multi locus sequence typing of Chlamydiales: clonal groupings within the obligate intracellular bacteria Chlamydia trachomatis. BMC Microbiol. 8, 42 (2008).

    Article  Google Scholar 

  14. Pedersen, L.N., Pødenphant, L. & Møller, J.K. Highly discriminative genotyping of Chlamydia trachomatis using omp1 and a set of variable number tandem repeats. Clin. Microbiol. Infect. 14, 644–652 (2008).

    Article  CAS  Google Scholar 

  15. Jeffrey, B.M. et al. Genome sequencing of recent clinical Chlamydia trachomatis strains identifies loci associated with tissue tropism and regions of apparent recombination. Infect. Immun. 78, 2544–2553 (2010).

    Article  CAS  Google Scholar 

  16. Harris, S.R. et al. Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nat. Genet. 44, 364–366 (2012).

    Article  Google Scholar 

  17. Joseph, S.J., Didelot, X., Gandhi, K., Dean, D. & Read, T.D. Interplay of recombination and selection in the genomes of Chlamydia trachomatis. Biol. Direct. 6, 28 (2011).

    Article  Google Scholar 

  18. Andersson, P., Klein, M., Lilliebridge, R.A. & Giffard, P.M. Sequences of multiple bacterial genomes and a Chlamydia trachomatis genotype from direct sequencing of DNA derived from a vaginal swab diagnostic specimen. Clin. Microbiol. Infect. 19, E405–E408 (2013).

    Article  CAS  Google Scholar 

  19. Melnikov, A. et al. Hybrid selection for sequencing pathogen genomes from clinical samples. Genome Biol. 12, R73 (2011).

    Article  CAS  Google Scholar 

  20. Depledge, D.P. et al. Specific capture and whole-genome sequencing of viruses from clinical samples. PLoS ONE 6, e27805 (2011).

    Article  CAS  Google Scholar 

  21. Bos, K.I. et al. A draft genome of Yersinia pestis from victims of the Black Death. Nature 478, 506–510 (2011).

    Article  CAS  Google Scholar 

  22. Kent, B.N. et al. Complete bacteriophage transfer in a bacterial endosymbiont (Wolbachia) determined by targeted genome capture. Genome Biol. Evol. 3, 209–218 (2011).

    Article  CAS  Google Scholar 

  23. Geniez, S. et al. Targeted genome enrichment for efficient purification of endosymbiont DNA from host DNA. Symbiosis 58, 201–207 (2012).

    Article  Google Scholar 

  24. Lasken, R.S. Genomic sequencing of uncultured microorganisms from single cells. Nat. Rev. Microbiol. 10, 631–640 (2012).

    Article  CAS  Google Scholar 

  25. Yilmaz, S. & Singh, A.K. Single cell genome sequencing. Curr. Opin. Biotechnol. 23, 437–443 (2012).

    Article  CAS  Google Scholar 

  26. Fitzsimons, M.S. et al. Nearly finished genomes produced using gel microdroplet culturing reveal substantial intraspecies genomic diversity within the human microbiome. Genome Res. 23, 878–888 (2013).

    Article  CAS  Google Scholar 

  27. McLean, J.S. et al. Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc. Natl. Acad. Sci. USA 110, E2390–E2399 (2013).

    Article  CAS  Google Scholar 

  28. Putman, T.E., Suchland, R.J., Ivanovitch, J.D. & Rockey, D.D. Culture-independent sequence analysis of Chlamydia trachomatis in urogenital specimens identifies regions of recombination and in-patient sequence mutations. Microbiology 159, 2109–2117 (2013).

    Article  CAS  Google Scholar 

  29. Skjerve, E., Rørvik, L.M. & Olsvik, O. Detection of Listeria monocytogenes in foods by immunomagnetic separation. Appl. Environ. Microbiol. 56, 3478–3481 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Niesters, H.G.M., Quint, W.G.V. & Herbrink, P. Antigen capture directed polymerase chain reaction for detection of Chlamydia trachomatis. in Techniques in diagnostic pathology Vol. 2 (eds. Bullock, G., Van Velzen, D. & Warhol, M.J.) (Academic Press, 1991).

  31. Fratamico, P.M., Schultz, F.J. & Buchanan, R.L. Rapid isolation of Escherichia coli O157:H7 from enrichment cultures of foods using an immunomagnetic separation method. Food Microbiol. 9, 105–113 (1992).

    Article  Google Scholar 

  32. Hedrum, A., Lundeberg, J., Påhlson, C. & Uhlén, M. Immunomagnetic recovery of Chlamydia trachomatis from urine with subsequent colorimetric DNA detection. Genome Res. 2, 167–171 (1992).

    Article  CAS  Google Scholar 

  33. Dean, F.B., Nelson, J.R., Giesler, T.L. & Lasken, R.S. Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 11, 1095–1099 (2001).

    Article  CAS  Google Scholar 

  34. Hosono, S. et al. Unbiased whole-genome amplification directly from clinical samples. Genome Res. 13, 954–964 (2003).

    Article  CAS  Google Scholar 

  35. Jalal, H. et al. Development and validation of a rotor-gene real-time PCR assay for detection, identification, and quantification of Chlamydia trachomatis in a single reaction. J. Clin. Microbiol. 44, 206–213 (2006).

    Article  CAS  Google Scholar 

  36. Su, H., Watkins, N.G., Zhang, Y.X. & Caldwell, H.D. Chlamydia trachomatis-host cell interactions: role of the chlamydial major outer membrane protein as an adhesin. Infect. Immun. 58, 1017–1025 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Thornley, M.J. et al. Characterization of a monoclonal antibody to the group antigen of Chlamydia spp. and its use for antigen detection by reverse passive haemagglutination and indirect immunofluorescence. FEMS Microbiol. Lett. 17, 45–49 (1983).

    Article  Google Scholar 

  38. Thornley, M.J., Zamza, S.E., Byrne, M.D., Lusher, M. & Evans, R.T. Properties of monoclonal antibodies to the genus-specific antigen of Chlamydia and their use for antigen detection by reverse passive haemagglutination. J. Gen. Microbiol. 131, 7–15 (1985).

    CAS  PubMed  Google Scholar 

  39. Zong, C., Lu, S., Chapman, A.R. & Xie, X.S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1626 (2012).

    Article  CAS  Google Scholar 

  40. Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008).

    Article  CAS  Google Scholar 

  41. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

  42. Carlson, J.H., Porcella, S.F., McClarty, G. & Caldwell, H.D. Comparative genomic analysis of Chlamydia trachomatis oculotropic and genitotropic strains. Infect. Immun. 73, 6407–6418 (2005).

    Article  CAS  Google Scholar 

  43. Thomson, N.R. et al. Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates. Genome Res. 18, 161–171 (2008).

    Article  CAS  Google Scholar 

  44. Stephens, R.S. et al. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759 (1998).

    Article  CAS  Google Scholar 

  45. Unemo, M. et al. The Swedish new variant of Chlamydia trachomatis: Genome sequence, morphology, cell tropism and phenotypic characterization. Microbiology 156, 1394–1404 (2010).

    Article  CAS  Google Scholar 

  46. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article  CAS  Google Scholar 

  47. Chitsaz, H. et al. Efficient de novo assembly of single-cell bacterial genomes from short-read data sets. Nat. Biotechnol. 29, 915–921 (2011).

    Article  CAS  Google Scholar 

  48. Peng, Y., Leung, H.C.M., Yiu, S.M. & Chin, F.Y.L. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).

    Article  CAS  Google Scholar 

  49. Assefa, S., Keane, T.M., Otto, T.D., Newbold, C. & Berriman, M. ABACAS: algorithm based automatic contiguation of assembled sequences. Bioinformatics 25, 1968–1969 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust (grant no. 098051). We thank L. Ellison for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

N.R.T., P.M., I.N.C., H.M.B.S.-S. and S.R.H. conceived of the project. H.M.B.S.-S. designed and performed the experiments, researched and optimized the protocol, and wrote the manuscript. N.R.T. supervised the development of the protocol, analyzed the data and wrote the manuscript. S.R.H. performed key data analysis, helped in the development of the protocol and wrote the manuscript. P.S. and S.P. contributed valuable information to the development of the protocol. S.P. provided discarded clinical samples. P.M., M.U., S.P., P.S., I.N.C. and J.P. provided insight into the experimental design and progress of the protocol, and on the results and implications of the work.

Corresponding authors

Correspondence to Helena M B Seth-Smith or Nicholas R Thomson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seth-Smith, H., Harris, S., Scott, P. et al. Generating whole bacterial genome sequences of low-abundance species from complex samples with IMS-MDA. Nat Protoc 8, 2404–2412 (2013). https://doi.org/10.1038/nprot.2013.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.147

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology