Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generation of targeted mouse mutants by embryo microinjection of TALEN mRNA

Abstract

Genetically engineered mice are instrumental for the analysis of mammalian gene function in health and disease. As classical gene targeting, which is performed in embryonic stem (ES) cell cultures and generates chimeric mice, is a time-consuming and labor-intensive procedure, we recently used transcription activator–like (TAL) effector nucleases (TALENs) for mutagenesis of the mouse genome directly in one-cell embryos. Here we describe a stepwise protocol for the generation of knock-in and knockout mice, including the selection of TALEN-binding sites, the design and construction of TALEN coding regions and of mutagenic oligodeoxynucleotides (ODNs) and targeting vectors, mRNA production, embryo microinjection and the identification of modified alleles in founder mutants and their progeny. After a setup time of 2–3 weeks of hands-on work for TALEN construction, investigators can obtain first founder mutants for genes of choice within 7 weeks after embryo microinjections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene targeting in one-cell embryos using TALENs.
Figure 2: Design of TALEN target sites.
Figure 3: Construction of TALEN expression vectors.
Figure 4: Timeline of in silico and molecular work.
Figure 5: TALEN reporter plasmids and activity assay.
Figure 6: Flowchart and timing of mutant production.

Similar content being viewed by others

References

  1. Capecchi, M.R. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat. Rev. Genet. 6, 507–512 (2005).

    Article  CAS  Google Scholar 

  2. Rouet, P., Smih, F. & Jasin, M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl. Acad. Sci. USA 91, 6064–6068 (1994).

    Article  CAS  Google Scholar 

  3. Porteus, M.H. & Carroll, D. Gene targeting using zinc-finger nucleases. Nat. Biotechnol. 23, 967–973 (2005).

    Article  CAS  Google Scholar 

  4. Meyer, M., de Angelis, M.H., Wurst, W. & Kuhn, R. Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc. Natl. Acad. Sci. USA 107, 15022–15026 (2010).

    Article  CAS  Google Scholar 

  5. Meyer, M., Ortiz, O., Hrabé de Angelis, M., Wurst, W. & Kühn, R. Modeling disease mutations by gene targeting in one-cell mouse embryos. Proc. Natl. Acad. Sci. USA 109, 9354–9359 (2012).

    Article  CAS  Google Scholar 

  6. Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512 (2009).

    Article  CAS  Google Scholar 

  7. Moscou, M.J. & Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501 (2009).

    Article  CAS  Google Scholar 

  8. Boch, J. & Bonas, U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol. 48, 419–436 (2010).

    Article  CAS  Google Scholar 

  9. Bogdanove, A.J., Schornack, S. & Lahaye, T. TAL effectors: finding plant genes for disease and defense. Curr. Opin. Plant Biol. 13, 394–401 (2010).

    Article  CAS  Google Scholar 

  10. Scholze, H. & Boch, J. TAL effectors are remote controls for gene activation. Curr. Opin. Microbiol. 14, 47–53 (2011).

    Article  CAS  Google Scholar 

  11. Deng, D. et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335, 720–723 (2012).

    Article  CAS  Google Scholar 

  12. Mak, A.N.-S., Bradley, P., Cernadas, R.A., Bogdanove, A.J. & Stoddard, B.L. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335, 716–719 (2012).

    Article  CAS  Google Scholar 

  13. Miller, J.C. et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143–148 (2011).

    Article  CAS  Google Scholar 

  14. Christian, M. et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757–761 (2010).

    Article  CAS  Google Scholar 

  15. Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).

    Article  CAS  Google Scholar 

  16. Heyer, W.-D., Ehmsen, K.T. & Liu, J. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44, 113–139 (2010).

    Article  CAS  Google Scholar 

  17. Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).

    Article  CAS  Google Scholar 

  18. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  Google Scholar 

  19. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  Google Scholar 

  20. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  CAS  Google Scholar 

  21. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  Google Scholar 

  22. Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).

    Article  CAS  Google Scholar 

  23. Hsu, P.D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    Article  CAS  Google Scholar 

  24. Wefers, B. et al. Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. Proc. Natl. Acad. Sci. USA 110, 3782–3787 (2013).

    Article  CAS  Google Scholar 

  25. Hockemeyer, D. et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat. Biotechnol. 29, 731–734 (2011).

    Article  CAS  Google Scholar 

  26. Wang, H. et al. TALEN-mediated editing of the mouse Y chromosome. Nat. Biotechnol. 31, 530–532 (2013).

    Article  CAS  Google Scholar 

  27. Doyle, E.L. et al. TAL effector-nucleotide targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res. 40, W117–W122 (2012).

    Article  CAS  Google Scholar 

  28. Sander, J.D. et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat. Biotechnol. 29, 697–698 (2011).

    Article  CAS  Google Scholar 

  29. Meckler, J.F. et al. Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Res. 41, 4118–4128 (2013).

    Article  CAS  Google Scholar 

  30. Streubel, J., Blücher, C., Landgraf, A. & Boch, J. TAL effector RVD specificities and efficiencies. Nat. Biotechnol. 30, 593–595 (2012).

    Article  CAS  Google Scholar 

  31. Cong, L., Zhou, R., Kuo, Y.-C., Cunniff, M. & Zhang, F. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat. Commun. 3, 968 (2012).

    Article  Google Scholar 

  32. Chen, F. et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat. Methods 8, 753–755 (2011).

    Article  CAS  Google Scholar 

  33. Wefers, B., Wurst, W. & Kühn, R. Design and Generation of gene-targeting vectors. Curr. Protoc. Mouse Biol. 1, 199–211 (2011).

    PubMed  Google Scholar 

  34. Hasty, P., Abuin, A. & Bradley, A. Gene targeting, principles, and practice in mammalian cells. in Gene Targeting: A Practical Approach (ed. Joyner, A.L.) 1–35 (Oxford University Press, 2000).

  35. Hasty, P., Rivera-Pérez, J. & Bradley, A. The length of homology required for gene targeting in embryonic stem cells. Mol. Cell Biol. 11, 5586–5591 (1991).

    Article  CAS  Google Scholar 

  36. Deng, C. & Capecchi, M.R. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell Biol. 12, 3365–3371 (1992).

    Article  CAS  Google Scholar 

  37. Reyon, D. et al. FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 30, 460–465 (2012).

    Article  CAS  Google Scholar 

  38. Briggs, A.W. et al. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res. 40, e117 (2012).

    Article  CAS  Google Scholar 

  39. Kim, H. et al. Surrogate reporters for enrichment of cells with nuclease-induced mutations. Nat. Methods 8, 941–943 (2011).

    Article  CAS  Google Scholar 

  40. Perez-Pinera, P., Ousterout, D.G., Brown, M.T. & Gersbach, C.A. Gene targeting to the ROSA26 locus directed by engineered zinc-finger nucleases. Nucleic Acids Res. 40, 3741–3752 (2012).

    Article  CAS  Google Scholar 

  41. Adenot, P.G., Mercier, Y., Renard, J.P. & Thompson, E.M. Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Dev. Camb. Engl. 124, 4615–4625 (1997).

    CAS  Google Scholar 

  42. Sung, Y.H. et al. Knockout mice created by TALEN-mediated gene targeting. Nat. Biotechnol. 31, 23–24 (2013).

    Article  CAS  Google Scholar 

  43. Tesson, L. et al. Knockout rats generated by embryo microinjection of TALENs. Nat. Biotechnol. 29, 695–696 (2011).

    Article  CAS  Google Scholar 

  44. Davies, B. et al. Site-specific mutation of the Zic2 locus by microinjection of TALEN mRNA in mouse CD1, C3H and C57BL/6J oocytes. PLoS ONE 8, e60216 (2013).

    Article  CAS  Google Scholar 

  45. Qiu, Z. et al. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases. Nucleic Acids Res. 41, e120 (2013).

  46. Southern, E. Southern blotting. Nat. Protoc. 1, 518–525 (2006).

    Article  CAS  Google Scholar 

  47. Liew, M. et al. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin. Chem. 50, 1156–1164 (2004).

    Article  CAS  Google Scholar 

  48. Ittner, L.M. & Götz, J. Pronuclear injection for the production of transgenic mice. Nat. Protoc. 2, 1206–1215 (2007).

    Article  CAS  Google Scholar 

  49. Nagy, A., Gertsenstein, M., Vintersten, K. & Behringer, R. Manipulating the Mouse Embryo (Cold Spring Harbour Laboratory Press, 2003).

  50. Sanjana, N.E. et al. A transcription activator-like effector toolbox for genome engineering. Nat. Protoc. 7, 171–192 (2012).

    Article  CAS  Google Scholar 

  51. Schmid-Burgk, J.L., Schmidt, T., Kaiser, V., Höning, K. & Hornung, V. A ligation-independent cloning technique for high-throughput assembly of transcription activator–like effector genes. Nat. Biotechnol. 31, 76–81 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union within the EUCOMMTools project (HEALTH-F4-2010-261492 to W.W.), by the German Ministry of Education and Research within the DIGTOP project (01GS0858 to W.W. and R.K.) of the German National Genome Research Network (NGFN)-Plus program and by the Indian Council of Agricultural Research (no.29-1/2009-EQR/Edn to S.K.P.).

Author information

Authors and Affiliations

Authors

Contributions

B.W., S.K.P., O.O., C.B. and R.K. performed the research and analyzed the data; B.W., S.K.P., O.O., C.B., S.H. and R.K. wrote the manuscript; J.H. designed the TALENdesigner tools and webpage; W.W. and R.K. supervised the research.

Corresponding author

Correspondence to Ralf Kühn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Genotyping: exemplary results for direct sequencing of PCR products.

Representative chromatograms of heterozygous mutants harboring a single nucleotide substitution (marked in red) (a) or an indel (b) resulting in two superimposed traces.

Supplementary Figure 2 Genotyping: exemplary results of a T7 endonuclease I assay.

Wild-type controls (wt) harbor only the full length PCR product (open triangle), whereas heterozygous mutants (het) show the additional presence of two digestion products (filled triangles) obtained by the cleavage of heteroduplex molecules within the TALEN target region.

Supplementary Figure 3 Genotyping: exemplary results for HRMA analysis.

Representative melting curves of PCR products amplified from a wild-type control (grey) and a mutant founder mouse (red).

Supplementary information

Supplementary Figure 1

Genotyping: exemplary results for direct sequencing of PCR products. (PDF 155 kb)

Supplementary Figure 2

Genotyping: exemplary results of a T7 endonuclease I assay. (PDF 148 kb)

Supplementary Figure 3

Genotyping: exemplary results for HRMA analysis. (PDF 27 kb)

Supplementary Data

(PDF 889 kb)

Pronuclear microinjection

This movie demonstrates the microinjection into the male pronucleus of a mouse one-cell embryo, fixed with a holding pipette. (AVI 2868 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wefers, B., Panda, S., Ortiz, O. et al. Generation of targeted mouse mutants by embryo microinjection of TALEN mRNA. Nat Protoc 8, 2355–2379 (2013). https://doi.org/10.1038/nprot.2013.142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.142

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing