Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

CRISPR interference (CRISPRi) for sequence-specific control of gene expression

Abstract

Sequence-specific control of gene expression on a genome-wide scale is an important approach for understanding gene functions and for engineering genetic regulatory systems. We have recently described an RNA-based method, CRISPR interference (CRISPRi), for targeted silencing of transcription in bacteria and human cells. The CRISPRi system is derived from the Streptococcus pyogenes CRISPR (clustered regularly interspaced palindromic repeats) pathway, requiring only the coexpression of a catalytically inactive Cas9 protein and a customizable single guide RNA (sgRNA). The Cas9-sgRNA complex binds to DNA elements complementary to the sgRNA and causes a steric block that halts transcript elongation by RNA polymerase, resulting in the repression of the target gene. Here we provide a protocol for the design, construction and expression of customized sgRNAs for transcriptional repression of any gene of interest. We also provide details for testing the repression activity of CRISPRi using quantitative fluorescence assays and native elongating transcript sequencing. CRISPRi provides a simplified approach for rapid gene repression within 1–2 weeks. The method can also be adapted for high-throughput interrogation of genome-wide gene functions and genetic interactions, thus providing a complementary approach to RNA interference, which can be used in a wider variety of organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The CRISPRi system for transcription repression in bacteria and human cells.
Figure 2: General workflow for the design, cloning and expression of sgRNAs.
Figure 3: Design of the sgRNAs.
Figure 4: Extensions to the base-pairing region with mismatched nucleotides decrease repression activity.
Figure 5: Cloning strategy for concatenating multiple sgRNA expression cassettes onto the same plasmid.

References

  1. Qi, L.S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    CAS  PubMed  Google Scholar 

  3. Wiedenheft, B., Sternberg, S.H. & Doudna, J.A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331–338 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Wiedenheft, B. et al. Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477, 486–489 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brouns, S.J.J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Makarova, K.S. et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9, 467–477 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Sashital, D.G., Jinek, M. & Doudna, J.A. An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3. Nat. Struct. Mol. Biol. 18, 680–687 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Carte, J., Pfister, N.T., Compton, M.M., Terns, R.M. & Terns, M.P. Binding and cleavage of CRISPR RNA by Cas6. RNA 16, 2181–2188 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karginov, F.V. & Hannon, G.J. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol. Cell 37, 7–19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sampson, T.R., Saroj, S.D., Llewellyn, A.C., Tzeng, Y.-L. & Weiss, D.S. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497, 254–257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 109, E2579–E2586 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sapranauskas, R. et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 39, 9275–9282 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190, 1390–1400 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Garneau, J.E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Mojica, F.J.M., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Shah, S.A., Erdmann, S., Mojica, F.J.M. & Garrett, R.A. Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol. 10, 891–899 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L.A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dicarlo, J.E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41, 4336–4343 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hwang, W.Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Jinek, M. et al. RNA-programmed genome editing in human cells. Elife 2, e00471 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hannon, G.J. RNA interference. Nature 418, 244–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Zamore, P.D., Tuschl, T., Sharp, P.A. & Bartel, D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Segal, D.J. & Barbas, C.F. Custom DNA-binding proteins come of age: polydactyl zinc-finger proteins. Curr. Opin. Biotechnol. 12, 632–637 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Beerli, R.R. & Barbas, C.F. Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20, 135–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, Q., Segal, D.J., Ghiara, J.B. & Barbas, C.F. Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc. Natl. Acad. Sci. USA 94, 5525–5530 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, F. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29, 149–153 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Garg, A., Lohmueller, J.J., Silver, P.A. & Armel, T.Z. Engineering synthetic TAL effectors with orthogonal target sites. Nucleic Acids Res. 40, 7584–7595 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sanjana, N.E. et al. A transcription activator-like effector toolbox for genome engineering. Nat. Protoc. 7, 171–192 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, D. & Rossi, J. RNAi mechanisms and applications. BioTechniques 44, 613–616 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klug, A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu. Rev. Biochem. 79, 213–231 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Lopez-Sanchez, M.-J. et al. The highly dynamic CRISPR1 system of Streptococcus agalactiae controls the diversity of its mobilome. Mol. Microbiol. 85, 1057–1071 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Fischer, S. et al. An archaeal immune system can detect multiple protospacer adjacent motifs (PAMs) to target invader DNA. J. Biol. Chem. 287, 33351–33363 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Westra, E.R. et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell 46, 595–605 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang, S.H. Inverse polymerase chain reaction. An efficient approach to cloning cDNA ends. Mol. Biotechnol. 2, 15–22 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Quan, J. & Tian, J. Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat. Protoc. 6, 242–251 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Shetty, R.P., Endy, D. & Knight, T.F. Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng. 2, 5 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Qi, L., Haurwitz, R.E., Shao, W., Doudna, J.A. & Arkin, A.P. RNA processing enables predictable programming of gene expression. Nat. Biotechnol. 30, 1002–1006 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Churchman, L.S. & Weissman, J.S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Churchman, L.S. & Weissman, J.S. Native elongating transcript sequencing (NET-seq). Curr. Protoc. Mol. Biol. 4, 14.1–14.17 (2012).

    Google Scholar 

  46. Kent, W.J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Meyer, L.R. et al. The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res. 41, D64–D69 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Keseler, I.M. et al. EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res. 39, D583–D590 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Bhagwat, M., Young, L. & Robison, R.R. Using BLAT to find sequence similarity in closely related genomes. Curr. Protoc. Bioinformatics 37, 10.8.1–10.8.24 (2012).

    Google Scholar 

  50. Jiang, H. & Wong, W.H. SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics 24, 2395–2396 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gruber, A.R., Lorenz, R., Bernhart, S.H., Neuböck, R. & Hofacker, I.L. The Vienna RNA websuite. Nucleic Acids Res. 36, W70–W74 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Markham, N.R. & Zuker, M. UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453, 3–31 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Paul, C.P., Good, P.D., Winer, I. & Engelke, D.R. Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20, 505–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Lucks, J.B., Qi, L., Mutalik, V.K., Wang, D. & Arkin, A.P. Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proc. Natl. Acad. Sci. USA 108, 8617–8622 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qi, L., Lucks, J.B., Liu, C.C., Mutalik, V.K. & Arkin, A.P. Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Res. 40, 5775–5786 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ventura, A. et al. Cre-lox-regulated conditional RNA interference from transgenes. Proc. Natl. Acad. Sci. USA 101, 10380–10385 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Inoue, H., Nojima, H. & Okayama, H. High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23–28 (1990).

    Article  CAS  PubMed  Google Scholar 

  60. Liu, C.C. et al. An adaptor from translational to transcriptional control enables predictable assembly of complex regulation. Nat. Methods 9, 1088–1094 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Mutalik, V.K., Qi, L., Guimaraes, J.C., Lucks, J.B. & Arkin, A.P. Rationally designed families of orthogonal RNA regulators of translation. Nat. Chem. Biol. 8, 447–454 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Liu, C.C., Qi, L., Yanofsky, C. & Arkin, A.P. Regulation of transcription by unnatural amino acids. Nat. Biotechnol. 29, 164–168 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Ingolia, N.T., Ghaemmaghami, S., Newman, J.R.S. & Weissman, J.S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Jonathan Weissman lab and Wendell Lim lab for their support. L.S.Q. acknowledges support from the UCSF Center for Systems and Synthetic Biology. This work was supported by US National Institutes of Health (NIH) grant no. P50 GM081879 (L.S.Q., W.A.L.), the Howard Hughes Medical Institute (M.H.L., L.A.G., J.S.W., W.A.L.), a Howard Hughes Collaborative Initiative Award (J.S.W.) and a Ruth L. Kirschstein National Research Service Award (M.H.L.). X.W. is supported by A Foundation for the Author of National Excellent Doctoral Dissertation grant (grant number 201158).

Author information

Authors and Affiliations

Authors

Contributions

L.S.Q., M.H.L., L.A.G. and X.W. wrote the manuscript. J.S.W., W.A.L. and L.S.Q. supervised the research.

Corresponding author

Correspondence to Lei S Qi.

Ethics declarations

Competing interests

The authors have filed a patent related to this work (US provisional patent application number 61/765,576).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larson, M., Gilbert, L., Wang, X. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc 8, 2180–2196 (2013). https://doi.org/10.1038/nprot.2013.132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing