Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Fabrication of pRNA nanoparticles to deliver therapeutic RNAs and bioactive compounds into tumor cells

Abstract

RNA nanotechnology is a term that refers to the design, fabrication and use of nanoparticles that are mainly composed of RNAs via bottom-up self-assembly. The packaging RNA (pRNA) of the bacteriophage phi29 DNA packaging motor has been developed into a nanodelivery platform. This protocol describes the synthesis, assembly and functionalization of pRNA nanoparticles on the basis of three 'toolkits' derived from pRNA structural features: interlocking loops for hand-in-hand interactions, palindrome sequences for foot-to-foot interactions and an RNA three-way junction for branch extension. siRNAs, ribozymes, aptamers, chemical ligands, fluorophores and other functionalities can also be fused to the pRNA before the assembly of the nanoparticles, so as to ensure the production of homogeneous nanoparticles and the retention of appropriate folding and function of the incorporated modules. The resulting self-assembled multivalent pRNA nanoparticles are thermodynamically and chemically stable, and they remain intact at ultralow concentrations. Gene-silencing effects are progressively enhanced with increasing numbers of siRNAs in each pRNA nanoparticle. Systemic injection of the pRNA nanoparticles into xenograft-bearing mice has revealed strong binding to tumors without accumulation in vital organs or tissues. The pRNA-based nanodelivery scaffold paves a new way for nanotechnological application of pRNA-based nanoparticles for disease detection and treatment. The time required for completing one round of this protocol is 3–4 weeks when including in vitro functional assays, or 2–3 months when including in vivo studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Structure of phi29 DNA packaging motor and packaging RNA.
Figure 3: Three toolkits for constructing pRNA nanoparticles.
Figure 4: AFM images of diverse pRNA nanoparticles constructed using toolkits I, II and III.
Figure 5: Functional assay of moieties incorporated in pRNA nanoparticles.
Figure 6: Construction of tetravalent pRNA-X nanoparticles harboring multiple siRNA for enhanced gene-silencing effects.
Figure 7: Stability assays for pRNA nanoparticle characterization.
Figure 8: In vivo binding and targeting of pRNA-X nanoparticles.

Similar content being viewed by others

References

  1. Guo, P. The emerging field of RNA nanotechnology. Nat. Nanotechnol. 5, 833–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Shu, D., Huang, L., Hoeprich, S. & Guo, P. Construction of phi29 DNA-packaging RNA (pRNA) monomers, dimers and trimers with variable sizes and shapes as potential parts for nano-devices. J. Nanosci. Nanotechnol. 3, 295–302 (2003).

    CAS  PubMed  Google Scholar 

  3. Shu, D., Moll, W.D., Deng, Z., Mao, C. & Guo, P. Bottom-up assembly of RNA arrays and superstructures as potential parts in nanotechnology. Nano Lett. 4, 1717–1723 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hansma, H.G., Oroudjev, E., Baudrey, S. & Jaeger, L. TectoRNA and 'kissing-loop' RNA: atomic force microscopy of self-assembling RNA structures. J. Microsc. 212, 273–279 (2003).

    CAS  PubMed  Google Scholar 

  5. Guo, P., Zhang, C., Chen, C., Trottier, M. & Garver, K. Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation. Mol. Cell 2, 149–155 (1998).

    CAS  PubMed  Google Scholar 

  6. Zhang, F. et al. Function of hexameric RNA in packaging of bacteriophage phi29 DNA in vitro. Mol. Cell 2, 141–147 (1998).

    CAS  PubMed  Google Scholar 

  7. Jaeger, L. & Leontis, N.B. Tecto-RNA: one dimensional self-assembly through tertiary interactions. Angew. Chem. Int. Ed. Engl. 39, 2521–2524 (2000).

    CAS  PubMed  Google Scholar 

  8. Jaeger, L., Westhof, E. & Leontis, N.B. TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Res. 29, 455–463 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chworos, A. et al. Building programmable jigsaw puzzles with RNA. Science 306, 2068–2072 (2004).

    CAS  PubMed  Google Scholar 

  10. Guo, P. RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy. J. Nanosci. Nanotechnol. 5 (12): 1964–1982 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jaeger, L. & Chworos, A. The architectonics of programmable RNA and DNA nanostructures. Curr. Opin. Struct. Biol. 16, 531–543 (2006).

    CAS  PubMed  Google Scholar 

  12. Abraham, M., Dror, O., Nussinov, R. & Wolfson, H.J. Analysis and classification of RNA tertiary structures. RNA 14, 2274–2289 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bindewald, E., Hayes, R., Yingling, Y.G., Kasprzak, W. & Shapiro, B.A. RNAJunction: a database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign. Nucleic Acids Res. 36, D392–D397 (2008).

    CAS  PubMed  Google Scholar 

  14. Schroeder, K.T., McPhee, S.A., Ouellet, J. & Lilley, D.M. A structural database for k-turn motifs in RNA. RNA 16, 1463–1468 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Westhof, E., Masquida, B. & Jaeger, L. RNA tectonics: towards RNA design. Fold. Des. 1, R78–R88 (1996).

    CAS  PubMed  Google Scholar 

  16. Lescoute, A. & Westhof, E. Topology of three-way junctions in folded RNAs. RNA 12, 83–93 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Leontis, N.B. & Westhof, E. Analysis of RNA motifs. Curr. Opin. Struct. Biol. 13, 300–308 (2003).

    CAS  PubMed  Google Scholar 

  18. Jossinet, F., Ludwig, T.E. & Westhof, E. RNA structure: bioinformatic analysis. Curr. Opin. Microbiol. 10, 279–285 (2007).

    CAS  PubMed  Google Scholar 

  19. Leontis, N.B., Lescoute, A. & Westhof, E. The building blocks and motifs of RNA architecture. Curr. Opin. Struct. Biol. 16, 279–287 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Leontis, N.B. & Westhof, E. The annotation of RNA motifs. Comp. Funct. Genomics 3, 518–524 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Leontis, N.B. & Westhof, E. Geometric nomenclature and classification of RNA base pairs. RNA 7, 499–512 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cadd, T.L. & Patterson, J.L. Synthesis of viruslike particles by expression of the putative capsid protein of Leishmania RNA virus in a recombinant baculovirus expression system. J. Virol. 68, 358–365 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. McKinney, S.A., Declais, A.C., Lilley, D.M.J. & Ha, T. Structural dynamics of individual Holliday junctions. Nat. Struct. Biol. 10, 93–97 (2003).

    CAS  PubMed  Google Scholar 

  24. Lilley, D.M. Structure, folding and catalysis of the small nucleolytic ribozymes. Curr. Opin. Struct. Biol. 9, 330–338 (1999).

    CAS  PubMed  Google Scholar 

  25. Delebecque, C.J., Lindner, A.B., Silver, P.A. & Aldaye, F.A. Organization of intracellular reactions with rationally designed RNA assemblies. Science 333, 470–474 (2011).

    CAS  PubMed  Google Scholar 

  26. Afonin, K.A. et al. Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nat. Protoc. 6, 2022–2034 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Huttenhofer, A., Schattner, P. & Polacek, N. Non-coding RNAs: hope or hype? Trends Genet. 21, 289–297 (2005).

    PubMed  Google Scholar 

  28. Strobel, S.A. & Cochrane, J.C. RNA catalysis: ribozymes, ribosomes, and riboswitches. Curr. Opin. Chem. Biol. 11, 636–643 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fabian, M.R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).

    CAS  PubMed  Google Scholar 

  30. Taft, R.J., Pang, K.C., Mercer, T.R., Dinger, M. & Mattick, J.S. Non-coding RNAs: regulators of disease. J. Pathol. 220, 126–139 (2010).

    CAS  PubMed  Google Scholar 

  31. Lee, C.Y.F., Rennie, P.S. & Jia, W.W.G. MicroRNA regulation of oncolytic herpes simplex virus-1 for selective killing of prostate cancer cells. Clin. Cancer Res. 15, 5126–5135 (2009).

    CAS  PubMed  Google Scholar 

  32. Zhang, C. Novel functions for small RNA molecules. Curr. Opin. Mol. Ther. 11, 641–651 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sudarsan, N. et al. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321, 411–413 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Henkin, T.M. Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev. 22, 3383–3390 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ogawa, A. & Maeda, M. An artificial aptazyme-based riboswitch and its cascading system in E. coli. Chembiochem 9, 206–209 (2008).

    CAS  PubMed  Google Scholar 

  36. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    CAS  PubMed  Google Scholar 

  37. Ghildiyal, M. & Zamore, P.D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo, P. et al. Engineering RNA for targeted siRNA delivery and medical application. Adv. Drug Deliv. Rev. 62, 650–666 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, H., Li, W.X. & Ding, S.W. Induction and suppression of RNA silencing by an animal virus. Science 296, 1319–1321 (2002).

    CAS  PubMed  Google Scholar 

  40. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    CAS  PubMed  Google Scholar 

  41. Jacque, J.M., Triques, K. & Stevenson, M. Modulation of HIV-1 replication by RNA interference. Nature 418, 435–438 (2002).

    CAS  PubMed  Google Scholar 

  42. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    CAS  PubMed  Google Scholar 

  43. Carmichael, G.G. Medicine: silencing viruses with RNA. Nature 418, 379–380 (2002).

    CAS  PubMed  Google Scholar 

  44. Cech, T.R., Zaug, A.J. & Grabowski, P.J. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27, 487–496 (1981).

    CAS  PubMed  Google Scholar 

  45. Chowrira, B.M., Berzal-Herranz, A. & Burke, J.M. Novel guanosine requirement for catalysis by the hairpin ribozyme. Nature 354, 320–322 (1991).

    CAS  PubMed  Google Scholar 

  46. Forster, A.C. & Symons, R.H. Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell 50, 9–16 (1987).

    CAS  PubMed  Google Scholar 

  47. Sarver, N.A. et al. Ribozymes as potential anti-HIV-1 therapeutic agents. Science 24, 1222–1225 (1990).

    Google Scholar 

  48. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857 (1983).

    CAS  PubMed  Google Scholar 

  49. Coleman, J., Hirashima, A., Inocuchi, Y., Green, P.J. & Inouye, M. A novel immune system against bacteriophage infection using complementary RNA (micRNA). Nature 315, 601–603 (1985).

    CAS  PubMed  Google Scholar 

  50. Knecht, D.A. & Loomis, W.F. Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideum. Science 236, 1081–1086 (1987).

    CAS  PubMed  Google Scholar 

  51. Duchaine, T.F. & Slack, F.J. RNA interference and micro-RNA-oriented therapy in cancer: rationales, promises, and challenges. Curr. Oncol. 16, 265–270 (2009).

    Google Scholar 

  52. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. He, L. & Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531 (2004).

    CAS  PubMed  Google Scholar 

  54. Breaker, R.R. Complex riboswitches. Science 319, 1795–1797 (2008).

    CAS  PubMed  Google Scholar 

  55. Tucker, B.J. & Breaker, R.R. Riboswitches as versatile gene control elements. Curr. Opin. Struct. Biol. 15, 342–348 (2005).

    CAS  PubMed  Google Scholar 

  56. Bouvet, P. Determination of nucleic acid recognition sequences by SELEX. Methods Mol. Biol. 148, 603–610 (2001).

    CAS  PubMed  Google Scholar 

  57. Ciesiolka, J., Gorski, J. & Yarus, M. Selection of an RNA domain that binds Zn2+. RNA 1, 538–550 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Clark, S. & Remcho, V. Aptamers as analytical reagents. Electrophoresis 23, 1335–1340 (2002).

    CAS  PubMed  Google Scholar 

  59. Kraus, E., James, W. & Barclay, A.N. Cutting edge: novel RNA ligands able to bind CD4 antigen and inhibit CD4+ T lymphocyte function. J. Immunol. 160, 5209–5212 (1998).

    CAS  PubMed  Google Scholar 

  60. Shu, D. & Guo, P. A viral RNA that binds ATP and contains an motif similar to an ATP-binding aptamer from SELEX. J. Biol. Chem. 278, 7119–7125 (2003).

    CAS  PubMed  Google Scholar 

  61. Shapiro, B.A. Computational design strategies for RNA nanostructures. J. Biomol. Str. Dyn. 26, 820 (2009).

    Google Scholar 

  62. Afonin, K.A. et al. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat. Nanotechnol. 5, 676–682 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yingling, Y.G. & Shapiro, B.A. Computational design of an RNA hexagonal nanoring and an RNA nanotube. Nano Lett. 7, 2328–2334 (2007).

    CAS  PubMed  Google Scholar 

  64. Bindewald, E., Grunewald, C., Boyle, B., O'Connor, M. & Shapiro, B.A. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler. J. Molec. Graph. Model. 27, 299–308 (2008).

    CAS  Google Scholar 

  65. Grabow, W.W. et al. Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett. 11, 878–887 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Shapiro, B.A., Bindewald, E., Kasprzak, W. & Yingling, Y. Protocols for the in silico design of RNA nanostructures. Methods Mol. Biol. 474, 93–115 (2008).

    CAS  PubMed  Google Scholar 

  67. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Andronescu, M., Fejes, A.P., Hutter, F., Hoos, H.H. & Condon, A. A new algorithm for RNA secondary structure design. J. Mol. Biol. 336, 607–624 (2004).

    CAS  PubMed  Google Scholar 

  69. Ding, Y., Chan, C.Y. & Lawrence, C.E. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res. 32, W135–W141 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zadeh, J.N. et al. NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011).

    CAS  PubMed  Google Scholar 

  71. Delebecque, C.J., Silver, P.A. & Lindner, A.B. Designing and using RNA scaffolds to assemble proteins in vivo. Nat. Protoc. 7, 1797–1807 (2012).

    CAS  PubMed  Google Scholar 

  72. Guo, P., Erickson, S. & Anderson, D. A small viral RNA is required for in vitro packaging of bacteriophage phi29 DNA. Science 236, 690–694 (1987).

    CAS  PubMed  Google Scholar 

  73. Lee, T.J. & Guo, P. Interaction of gp16 with pRNA and DNA for genome packaging by the motor of bacterial virus phi29. J. Mol. Biol. 356, 589–599 (2006).

    CAS  PubMed  Google Scholar 

  74. Cairns, J., Overbaugh, J. & Miller, S. The origin of mutants. Nature 335, 142–145 (1988).

    CAS  PubMed  Google Scholar 

  75. Reid, R.J.D., Bodley, J.W. & Anderson, D. Characterization of the prohead-pRNA interaction of bacteriophage phi29. J. Biol. Chem. 269, 5157–5162 (1994).

    CAS  PubMed  Google Scholar 

  76. Garver, K. & Guo, P. Boundary of pRNA functional domains and minimum pRNA sequence requirement for specific connector binding and DNA packaging of phage phi29. RNA 3, 1068–1079 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang, C.L., Lee, C.-S. & Guo, P. The proximate 5′ and 3′ ends of the 120-base viral RNA (pRNA) are crucial for the packaging of bacteriophage f29 DNA. Virology 201, 77–85 (1994).

    CAS  PubMed  Google Scholar 

  78. Reid, R.J.D., Bodley, J.W. & Anderson, D. Identification of bacteriophage phi29 prohead RNA (pRNA) domains necessary for in vitro DNA-gp3 packaging. J. Biol. Chem. 269, 9084–9089 (1994).

    CAS  PubMed  Google Scholar 

  79. Reid, R.J.D., Zhang, F., Benson, S. & Anderson, D. Probing the structure of bacteriophage phi29 prohead RNA with specific mutations. J. Biol. Chem. 269, 18656–18661 (1994).

    CAS  PubMed  Google Scholar 

  80. Chen, C., Sheng, S., Shao, Z. & Guo, P. A dimer as a building block in assembling RNA: A hexamer that gears bacterial virus phi29 DNA-translocating machinery. J. Biol. Chem. 275, 17510–17516 (2000).

    CAS  PubMed  Google Scholar 

  81. Chen, C., Zhang, C. & Guo, P. Sequence requirement for hand-in-hand interaction in formation of pRNA dimers and hexamers to gear phi29 DNA translocation motor. RNA 5, 805–818 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Guo, S., Tschammer, N., Mohammed, S. & Guo, P. Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA. Hum. Gene Ther. 16, 1097–1109 (2005).

    CAS  PubMed  Google Scholar 

  83. Khaled, A., Guo, S., Li, F. & Guo, P. Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano Lett. 5, 1797–1808 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hoeprich, S. et al. Bacterial virus phi29 pRNA as a hammerhead ribozyme escort to destroy hepatitis B virus. Gene Ther. 10, 1258–1267 (2003).

    CAS  PubMed  Google Scholar 

  85. Guo, S., Huang, F. & Guo, P. Construction of folate-conjugated pRNA of bacteriophage phi29 DNA packaging motor for delivery of chimeric siRNA to nasopharyngeal carcinoma cells. Gene Ther. 13, 814–820 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu, H. et al. Phi29 pRNA vector for efficient escort of hammerhead ribozyme targeting survivin in multiple cancer cells. Cancer Biol. Ther. 6, 697–704 (2007).

    CAS  PubMed  Google Scholar 

  87. Li, L., Liu, J., Diao, Z., Guo, P. & Shen, G. Evaluation of specific delivery of chimeric phi29 pRNA/siRNA nanoparticles to multiple tumor cells. Molec. BioSyst. 5, 1361–1368 (2009).

    CAS  Google Scholar 

  88. Zhang, H.M. et al. Targeted delivery of anti-coxsackievirus siRNAs using ligand-conjugated packaging RNAs. Antiviral Res. 83, 307–316 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tarapore, P., Shu, Y., Guo, P. & Ho, S.M. Application of Phi29 motor pRNA for targeted therapeutic delivery of siRNA silencing metallothionein-IIA and survivin in ovarian cancers. Molec. Ther. 19, 386–394 (2010).

    Google Scholar 

  90. Shu, D., Shu, Y., Haque, F., Abdelmawla, S. & Guo, P. Thermodynamically stable RNA three-way junctions for constructing multifuntional nanoparticles for delivery of therapeutics. Nat. Nanotechnol. 6, 658–667 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Haque, F. et al. Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today 7, 245–257 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Shu, Y. et al. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs. RNA 19, 766–777 (2013).

    Google Scholar 

  93. Douglas, S.J., Davis, S.S. & Illum, L. Nanoparticles in drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 3, 233–261 (1987).

    CAS  PubMed  Google Scholar 

  94. Moon, M.H. & Giddings, J.C. Size distribution of liposomes by flow field-flow fractionation. J. Pharm. Biomed. Anal. 11, 911–920 (1993).

    CAS  PubMed  Google Scholar 

  95. Singh, A. & Marchywka, S. Synthesis and characterization of head group modified 1,3 diacetylenic phospholipids. Abstr. Pap. Am. Chem. Soc. 198, 147 (1989).

    Google Scholar 

  96. Agarwal, K., Bali, A. & Gupta, C.M. Influence of the phospholipid structure on the stability of liposomes in serum. Biochim. Biophys. Acta 856, 36–40 (1986).

    CAS  PubMed  Google Scholar 

  97. Gupta, C.M. & Bali, A. Carbamyl analogs of phosphatidylcholines. Synthesis, interaction with phospholipases and permeability behavior of their liposomes. Biochim. Biophys. Acta 663, 506–515 (1981).

    CAS  PubMed  Google Scholar 

  98. Koziara, J.M., Lockman, P.R., Allen, D.D. & Mumper, R.J. The blood-brain barrier and brain drug delivery. J. Nanosci. Nanotechnol. 6, 2712–2735 (2006).

    CAS  PubMed  Google Scholar 

  99. Lockman, P.R., Koziara, J.M., Mumper, R.J. & Allen, D.D. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J. Drug Target 12, 635–641 (2004).

    CAS  PubMed  Google Scholar 

  100. Vasey, P.A. et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign phase I/II committee. Clin. Cancer Res. 5, 83–94 (1999).

    CAS  PubMed  Google Scholar 

  101. Liu, C. & Zhang, N. Nanoparticles in gene therapy principles, prospects, and challenges. Prog. Mol. Biol. Transl. Sci. 104, 509–562 (2011).

    CAS  PubMed  Google Scholar 

  102. Maham, A., Tang, Z., Wu, H., Wang, J. & Lin, Y. Protein-based nanomedicine platforms for drug delivery. Small 5, 1706–1721 (2009).

    CAS  PubMed  Google Scholar 

  103. Ulery, B.D., Nair, L.S. & Laurencin, C.T. Biomedical applications of biodegradable polymers. J. Polym. Sci. B Polym. Phys. 49, 832–864 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Curcio, M. et al. Grafted thermo-responsive gelatin microspheres as delivery systems in triggered drug release. Eur. J. Pharm. Biopharm. 76, 48–55 (2010).

    CAS  PubMed  Google Scholar 

  105. Curcio, M. et al. Negative thermo-responsive microspheres based on hydrolyzed gelatin as drug delivery device. AAPS PharmSciTech. 11, 652–662 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Rizi, K., Green, R.J., Khutoryanskaya, O., Donaldson, M. & Williams, A.C. Mechanisms of burst release from pH-responsive polymeric microparticles. J. Pharm. Pharmacol. 63, 1141–1155 (2011).

    CAS  PubMed  Google Scholar 

  107. Manchester, M. & Singh, P. Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. Adv. Drug Deliv. Rev. 58, 1505–1522 (2006).

    CAS  PubMed  Google Scholar 

  108. Rae, C.S. et al. Systemic trafficking of plant virus nanoparticles in mice via the oral route. Virology 343, 224–235 (2005).

    CAS  PubMed  Google Scholar 

  109. Huang, H.C., Barua, S., Sharma, G., Dey, S.K. & Rege, K. Inorganic nanoparticles for cancer imaging and therapy. J. Control Release 155, 344–357 (2011).

    CAS  PubMed  Google Scholar 

  110. Shukla, R. et al. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21, 10644–10654 (2005).

    CAS  PubMed  Google Scholar 

  111. Kallenbach, N., Ma, R. & Seeman, N. An immobile nucleic acid junction constructed from oligonucleotides. Nature 305, 829–831 (1983).

    CAS  Google Scholar 

  112. Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  PubMed  Google Scholar 

  113. Chen, J.H. & Seeman, N.C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    CAS  PubMed  Google Scholar 

  114. Ke, Y., Liu, Y., Zhang, J. & Yan, H. A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures. J. Am. Chem. Soc. 128, 4414–4421 (2006).

    CAS  PubMed  Google Scholar 

  115. Kuzuya, A., Wang, R., Sha, R. & Seeman, N.C. Six-helix and eight-helix DNA nanotubes assembled from half-tubes. Nano. Lett. 7, 1757–1763 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Winfree, E., Liu, F., Wenzler, L.A. & Seeman, N.C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    CAS  PubMed  Google Scholar 

  117. Gu, H., Chao, J., Xiao, S.J. & Seeman, N.C. Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate. Nat. Nanotechnol. 4, 245–248 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ke, Y. et al. Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 131, 15903–15908 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Mao, C., Sun, W., Shen, Z. & Seeman, N.C. A nanomechanical device based on the B-Z transition of DNA. Nature 397, 144–146 (1999).

    CAS  PubMed  Google Scholar 

  120. Yan, H., Zhang, X., Shen, Z. & Seeman, N.C. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).

    CAS  PubMed  Google Scholar 

  121. Yurke, B., Turberfield, A.J., Mills, A.P. Jr., Simmel, F.C. & Neumann, J.L. DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    CAS  PubMed  Google Scholar 

  122. Sherman, W.B. & Seeman, N.C. A precisely controlled DNA biped walking device. Nano Lett. 4, 1203–1207 (2004).

    CAS  Google Scholar 

  123. Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Li, J. & Bai, L. DNA nanotechnology. A metamaterial with memory. Nat. Nanotechnol. 7, 773–774 (2012).

    CAS  PubMed  Google Scholar 

  125. Seeman, N.C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Lin, C., Liu, Y. & Yan, H. Designer DNA nanoarchitectures. Biochemistry 48, 1663–1674 (2009).

    CAS  PubMed  Google Scholar 

  127. Simmel, F.C. Three-dimensional nanoconstruction with DNA. Angew. Chem. Int. Ed. 47, 5884–5887 (2008).

    CAS  Google Scholar 

  128. Feldkamp, U. & Niemeyer, C.M. Rational design of DNA nanoarchitectures. Angew. Chem. Int. Ed. 45, 1856–1876 (2006).

    CAS  Google Scholar 

  129. Deng, Z., Lee, S.H. & Mao, C. DNA as nanoscale building blocks. J. Nanosci. Nanotechnol. 5, 1954–1963 (2005).

    CAS  PubMed  Google Scholar 

  130. Seeman, N.C. DNA in a material world. Nature 421, 427–431 (2003).

    PubMed  Google Scholar 

  131. Eckardt, L.H. et al. DNA nanotechnology: chemical copying of connectivity. Nature 420, 286 (2002).

    CAS  PubMed  Google Scholar 

  132. Seeman, N.C. DNA engineering and its application to nanotechnology. Trends Biotechnol. 17, 437–443 (1999).

    CAS  PubMed  Google Scholar 

  133. Seeman, N.C. DNA nanotechnology: novel DNA constructions. Annu. Rev. Biophys. Biomol. Struct. 27, 225–248 (1998).

    CAS  PubMed  Google Scholar 

  134. Mbindyo, J.K.N. et al. DNA-directed assembly of gold nanowires on complementary surfaces. Adv. Mater. 13, 249–254 (2001).

    CAS  Google Scholar 

  135. Perez, J.M., O'Loughin, T., Simeone, F.J., Weissleder, R. & Josephson, L. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J. Am. Chem. Soc. 124, 2856–2857 (2002).

    CAS  PubMed  Google Scholar 

  136. Xiao, S. et al. Self-assembly of metallic nanoparticle arrays by DNA scaffolding. J. Nanopart. Res. 4, 313–317 (2002).

    CAS  Google Scholar 

  137. Deng, Z. & Mao, C. DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays. Nano Lett. 3, 1545–1548 (2003).

    CAS  Google Scholar 

  138. Monson, C.F. & Woolley, A.T. DNA-templated construction of copper nanowires. Nano Lett. 3, 359–363 (2003).

    CAS  Google Scholar 

  139. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H. & LaBean, T.H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003).

    CAS  PubMed  Google Scholar 

  140. Keren, K., Berman, R.S., Buchstab, E., Sivan, U. & Braun, E. DNA-templated carbon nanotube field-effect transistor. Science 302, 1380–1382 (2003).

    CAS  PubMed  Google Scholar 

  141. Mitchell, G.P., Mirkin, C.A. & Letsinger, R.L. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121, 8122–8123 (1999).

    CAS  Google Scholar 

  142. Xiong, X. et al. DNA aptamer-mediated cell targeting. Angew. Chem. Int. Ed. Engl. 52, 1472–1476 (2013).

    CAS  PubMed  Google Scholar 

  143. Zhang, C. et al. Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proc. Natl. Acad. Sci. USA 105, 10665–10669 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Guo, P., Haque, F., Hallahan, B., Reif, R. & Li, H. Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic Acid Ther. 22, 226–245 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. de Fougerolles, A., Vornlocher, H.P., Maraganore, J. & Lieberman, J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat. Rev. Drug Discov. 6, 443–453 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Kim, D.H. & Rossi, J.J. Strategies for silencing human disease using RNA interference. Nat. Rev. Genet. 8, 173–184 (2007).

    CAS  PubMed  Google Scholar 

  147. Rozema, D.B. et al. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl. Acad. Sci. 104, 12982–12987 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Seth, S., Johns, R. & Templin, M.V. Delivery and biodistribution of siRNA for cancer therapy: challenges and future prospects. Ther. Deliv. 3, 245–261 (2012).

    CAS  PubMed  Google Scholar 

  149. Liu, J. et al. Fabrication of stable and RNase-resistant RNA nanoparticles active in gearing the nanomotors for viral DNA packaging. ACS Nano 5, 237–246 (2010).

    PubMed  PubMed Central  Google Scholar 

  150. Abdelmawla, S. et al. Pharmacological characterization of chemically synthesized monomeric pRNA nanoparticles for systemic delivery. Molec. Ther. 19, 1312–1322 (2011).

    CAS  Google Scholar 

  151. Jain, K.K. The role of nanobiotechnology in drug discovery. Drug Discov. Today 10, 1435–1442 (2005).

    CAS  PubMed  Google Scholar 

  152. Li, W. & Szoka, F. Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res. 24, 438–449 (2007).

    PubMed  Google Scholar 

  153. Gao, H., Shi, W. & Freund, L.B. Mechanics of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA 102, 9469–9474 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Afonin, K.A., Danilov, E.O., Novikova, I.V. & Leontis, N.B. TokenRNA: A new type of sequence-specific, label-free fluorescent biosensor for folded RNA molecules. Chembiochem 9, 1902–1905 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Ferapontova, E.E., Olsen, E.M. & Gothelf, K.V. An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. J. Am. Chem. Soc. 130, 4256–4258 (2008).

    CAS  PubMed  Google Scholar 

  156. Watts, J.K., Deleavey, G.F. & Damha, M.J. Chemically modified siRNA: tools and applications. Drug Discov. Today 13, 842–855 (2008).

    CAS  PubMed  Google Scholar 

  157. Behlke, M.A. Chemical modification of siRNAs for in vivo use. Oligonucleotides 18, 305–319 (2008).

    CAS  PubMed  Google Scholar 

  158. Corey, D.R. Chemical modification: the key to clinical application of RNA interference? J. Clin. Invest. 117, 3615–3622 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Choung, S., Kim, Y.J., Kim, S., Park, H.O. & Choi, Y.C. Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem. Biophys. Res. Commun. 342, 919–927 (2006).

    CAS  PubMed  Google Scholar 

  160. Layzer, J.M. et al. In vivo activity of nuclease-resistant siRNAs. RNA 10, 766–771 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Braasch, D.A. et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42, 7967–7975 (2003).

    CAS  PubMed  Google Scholar 

  162. Salomone, F. et al. A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape. J. Control Release 163, 293–303 (2012).

    CAS  PubMed  Google Scholar 

  163. Liou, J.S. et al. Protein transduction in human cells is enhanced by cell-penetrating peptides fused with an endosomolytic HA2 sequence. Peptides 37, 273–284 (2012).

    CAS  PubMed  Google Scholar 

  164. Mellman, I., Fuchs, R. & Helenius, A. Acidification of the endocytic and exocytic pathways. Annu. Rev. Biochem. 55, 663–700 (1986).

    CAS  PubMed  Google Scholar 

  165. Varkouhi, A.K., Scholte, M., Storm, G. & Haisma, H.J. Endosomal escape pathways for delivery of biologicals. J. Control Release 151, 220–228 (2011).

    CAS  PubMed  Google Scholar 

  166. Li, N., Yu, C. & Huang, F. Novel cyanine-AMP conjugates for efficient 5′ RNA fluorescent labeling by one-step transcription and replacement of [γ-32P]ATP in RNA structural investigation. Nucleic Acids Res. 33, e37 (2005).

    PubMed  PubMed Central  Google Scholar 

  167. Sousa, R. Use of T7 RNA polymerase and its mutants for incorporation of nucleoside analogs into RNA. Methods Enzymol. 317, 65–74 (2000).

    CAS  PubMed  Google Scholar 

  168. Sousa, R. & Padilla, R. A mutant T7 RNA polymerase as a DNA polymerase. EMBO J. 14, 4609–4621 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Shu, Y., Cinier, M., Fox, S.R., Ben-Johnathan, N. & Guo, P. Assembly of therapeutic pRNA-siRNA nanoparticles using bipartite approach. Molec. Ther. 19, 1304–1311 (2011).

    CAS  Google Scholar 

  170. Guha, M. et al. Endogenous tumor suppression mediated by PTEN involves survivin gene silencing. Cancer Res. 69, 4954–4958 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Fulda, S. & Debatin, K.M. Sensitization for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by the chemopreventive agent resveratrol. Cancer Res. 64, 337–346 (2004).

    CAS  PubMed  Google Scholar 

  172. Bookout, A.L. & Mangelsdorf, D.J. Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nucl. Recept. Signal. 1, e012 (2003).

    PubMed  PubMed Central  Google Scholar 

  173. Gold, L. The SELEX process: a surprising source of therapeutic and diagnostic compounds. Harvey Lect. 91, 47–57 (1995).

    PubMed  Google Scholar 

  174. Ellington, A.D. & Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    CAS  PubMed  Google Scholar 

  175. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA ploymerase. Science 249, 505–510 (1990).

    CAS  PubMed  Google Scholar 

  176. Baugh, C., Grate, D. & Wilson, C. 2.8 A crystal structure of the malachite green aptamer. J. Mol. Biol. 301, 117–128 (2000).

    CAS  PubMed  Google Scholar 

  177. Srisawat, C. & Engelke, D.R. Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins. RNA 7, 632–641 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Guo, P., Shu, Y., Binzel, D. & Cinier, M. Synthesis, conjugation, and labeling of multifunctional pRNA nanoparticles for specific delivery of siRNA, drugs and other therapeutics to target cells. Methods Molec. Biol. 928, 197–219 (2012).

    CAS  Google Scholar 

  179. Huang, F. Efficient incorporation of CoA, NAD and FAD into RNA by in vitro transcription. Nucleic Acids Res. 31, e8 (2003).

    PubMed  PubMed Central  Google Scholar 

  180. Shu, D., Zhang, H., Jin, J. & Guo, P. Counting of six pRNAs of phi29 DNA-packaging motor with customized single molecule dual-view system. EMBO J. 26, 527–537 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Garver, K. & Guo, P. Mapping the inter-RNA interaction of phage phi29 by site-specific photoaffinity crosslinking. J. Biol. Chem. 275, 2817–2824 (2000).

    CAS  PubMed  Google Scholar 

  182. Sampson, J.R. & Uhlenbeck, O.C. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc. Natl. Acad. Sci. USA 85, 1033–1037 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Shlyakhtenko, L.S. et al. Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy 97, 279–287 (2003).

    CAS  PubMed  Google Scholar 

  184. Lyubchenko, Y.L. & Shlyakhtenko, L.S. AFM for analysis of structure and dynamics of DNA and protein-DNA complexes. Methods 47, 206–213 (2009).

    CAS  PubMed  Google Scholar 

  185. Searle, M.S. & Williams, D.H. On the stability of nucleic acid structures in solution: enthalpy-entropy compensations, internal rotations and reversibility. Nucleic Acids Res. 21, 2051–2056 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Kitamura, A., Jardine, P.J., Anderson, D.L., Grimes, S. & Matsuo, H. Analysis of intermolecular base pair formation of prohead RNA of the phage phi29 DNA packaging motor using NMR spectroscopy. Nucleic Acids Res. 36, 839–848 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported by US National Institutes of Health (NIH) grants EB003730 and CA151648, and by the Arnold and Mabel Beckman Initiative for Macular Research External Grant 1108 to P. Guo. AFM images were obtained by L. Shlyakhtenko and Y. Lyubchenko at the Nanoimaging Core Facility, University of Nebraska Medical Center, supported by the NIH Shared Instrumentations Grant Program and the University of Nebraska Medical Center Program Excellence (POE) and the Nebraska Research Initiative (NRI). We thank D. Rodger and M. Chow at University of Kentucky for the help with dynamic light scattering; F. Huang at The University of Southern Mississippi for providing Cy3- and Cy5-labeled AMP and GMP; and J. Haak, E. Khisamutdinov, E. Beabout, and F. Pi for help with the manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

P.G. conceived and led the project. Y.S., D.S. and F.H. designed and conducted the experiments and co-wrote the manuscript with P.G.

Corresponding author

Correspondence to Peixuan Guo.

Ethics declarations

Competing interests

P.G. is a co-founder of Kylin Therapeutics and Biomotor and Nucleic Acid Nanotechnology Development Corp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shu, Y., Shu, D., Haque, F. et al. Fabrication of pRNA nanoparticles to deliver therapeutic RNAs and bioactive compounds into tumor cells. Nat Protoc 8, 1635–1659 (2013). https://doi.org/10.1038/nprot.2013.097

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.097

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research