Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Site-specific NMR mapping and time-resolved monitoring of serine and threonine phosphorylation in reconstituted kinase reactions and mammalian cell extracts

A Corrigendum to this article was published on 30 December 2015

This article has been updated


We outline NMR protocols for site-specific mapping and time-resolved monitoring of protein phosphorylation reactions using purified kinases and mammalian cell extracts. These approaches are particularly amenable to intrinsically disordered proteins and unfolded, regulatory protein domains. We present examples for the 15N isotope-labeled N-terminal transactivation domain of human p53, which is either sequentially reacted with recombinant enzymes or directly added to mammalian cell extracts and phosphorylated by endogenous kinases. Phosphorylation reactions with purified enzymes are set up in minutes, whereas NMR samples in cell extracts are prepared within 1 h. Time-resolved NMR measurements are performed over minutes to hours depending on the activities of the probed kinases. Phosphorylation is quantitatively monitored with consecutive 2D 1H-15N band-selective optimized-flip-angle short-transient (SOFAST)-heteronuclear multiple-quantum (HMQC) NMR experiments, which provide atomic-resolution insights into the phosphorylation levels of individual substrate residues and time-dependent changes thereof, thereby offering unique advantages over western blotting and mass spectrometry.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic overview of NMR procedures for monitoring protein phosphorylation reactions in vitro and in mammalian cell extracts.
Figure 2: NMR properties of serine/threonine phosphorylation.
Figure 3: Time-resolved NMR monitoring of p53 phosphorylation reactions in vitro.
Figure 4: Time-resolved NMR monitoring of p53 phosphorylation reactions in cell extracts.
Figure 5: In-extract NMR monitoring of quenched p53 phosphorylation reactions.

Accession codes


Biological Magnetic Resonance Data Bank

Change history

  • 28 October 2015

     In the version of this article initially published, Equation 11 was incorrect. This sign within the brackets was 'plus' and it should have been 'minus'. The error has been corrected in the HTML and PDF versions of the article.


  1. 1

    Deribe, Y.L., Pawson, T. & Dikic, I. Post-translational modifications in signal integration. Nat. Struct. Mol. Biol. 17, 666–672 (2010).

    Article  CAS  Google Scholar 

  2. 2

    Walsh, C.T., Garneau-Tsodikova, S. & Gatto, G.J. Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. Engl. 44, 7342–7372 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Khoury, G.A., Baliban, R.C. & Floudas, C.A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the SwissProt database. Sci. Rep. (13 September 2011).

  4. 4

    Hunter, T. Tyrosine-phosphorylation: thirty years and counting. Curr. Opin. Cell Biol. 21, 140–146 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Kee, J.M. & Muir, T.W. Chasing phosphohistidine, an elusive sibling in the phosphoamino acid family. ACS Chem. Biol. 7, 44–51 (2012).

    Article  CAS  Google Scholar 

  6. 6

    Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    McConnell, J.L. & Wadzinski, B.E. Targeting protein serine/threonine phosphatases for drug development. Mol. Pharmacol. 75, 1249–1261 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Eglen, R.M. & Reisine, T. The current status of drug discovery against the human kinome. Assay Drug Dev. Technol. 7, 22–43 (2009).

    Article  CAS  Google Scholar 

  9. 9

    Schwartz, P.A. & Murray, B.W. Protein kinase biochemistry and drug discovery. Bioorg. Chem. 39, 192–210 (2011).

    Article  CAS  Google Scholar 

  10. 10

    Cohen, P. The regulation of protein function by multisite phosphorylation–a 25-year update. Trends Biochem. Sci. 25, 596–601 (2000).

    Article  CAS  Google Scholar 

  11. 11

    Yang, X.J. Multisite protein modification and intramolecular signaling. Oncogene 24, 1653–1662 (2005).

    Article  CAS  Google Scholar 

  12. 12

    Gnad, F., Gunawardena, J. & Mann, M. PHOSIDA 2011: the posttranslational modification database. Nucleic Acids Res. 39, D253–260 (2011).

    Article  CAS  Google Scholar 

  13. 13

    Schweiger, R. & Linial, M. Cooperativity within proximal phosphorylation sites is revealed from large-scale proteomics data. Biol. Direct 5, 6 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Thomson, M. & Gunawardena, J. Unlimited multistability in multisite phosphorylation systems. Nature 460, 274–277 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Salazar, C. & Hofer, T. Multisite protein phosphorylation–from molecular mechanisms to kinetic models. FEBS J. 276, 3177–3198 (2009).

    Article  CAS  Google Scholar 

  16. 16

    Liu, X., Bardwell, L. & Nie, Q. A combination of multisite phosphorylation and substrate sequestration produces switchlike responses. Biophys. J. 98, 1396–1407 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Wang, L., Nie, Q. & Enciso, G. Non-essential sites improve phosphorylation switch. Biophys. J. 99, L41–L43 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Selenko, P. et al. In situ observation of protein phosphorylation by high-resolution NMR spectroscopy. Nat. Struct. Mol. Biol. 15, 321–329 (2008).

    Article  CAS  Google Scholar 

  19. 19

    Liokatis, S., Dose, A., Schwarzer, D. & Selenko, P. Simultaneous detection of protein phosphorylation and acetylation by high-resolution NMR spectroscopy. J. Am. Chem. Soc. 132, 14704–14705 (2010).

    Article  CAS  Google Scholar 

  20. 20

    Theillet, F.X. et al. Site-specific mapping and time-resolved monitoring of lysine methylation by high-resolution NMR spectroscopy. J. Am. Chem. Soc. 134, 7616–7619 (2012).

    Article  CAS  Google Scholar 

  21. 21

    Liokatis, S. et al. Phosphorylation of histone H3 Ser10 establishes a hierarchy for subsequent intramolecular modification events. Nat. Struct. Mol. Biol. 19, 819–823 (2012).

    Article  CAS  Google Scholar 

  22. 22

    Theillet, F.X. et al. Cell signaling, post-translational protein modifications and NMR spectroscopy. J. Biomol. NMR 54, 217–236 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Mag. Res. Sp. 34, 93–158 (1999).

    Article  CAS  Google Scholar 

  24. 24

    Brutscher, B. & Lescop, E. Fast protein backbone NMR resonance assignment using the BATCH strategy. Methods Mol. Biol. 831, 407–428 (2012).

    Article  CAS  Google Scholar 

  25. 25

    Schanda, P., Kupce, E. & Brutscher, B. SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J. Biomol. NMR 33, 199–211 (2005).

    Article  CAS  Google Scholar 

  26. 26

    Ishida, A., Kameshita, I., Sueyoshi, N., Taniguchi, T. & Shigeri, Y. Recent advances in technologies for analyzing protein kinases. J. Pharmacol. Sci. 103, 5–11 (2007).

    Article  CAS  Google Scholar 

  27. 27

    Kubota, K. et al. Sensitive multiplexed analysis of kinase activities and activity-based kinase identification. Nat. Biotechnol. 27, 933–940 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Arsenault, R., Griebel, P. & Napper, S. Peptide arrays for kinome analysis: new opportunities and remaining challenges. Proteomics 11, 4595–4609 (2011).

    Article  CAS  Google Scholar 

  29. 29

    Gonzalez-Vera, J.A. Probing the kinome in real time with fluorescent peptides. Chem. Soc. Rev. 41, 1652–1664 (2012).

    Article  CAS  Google Scholar 

  30. 30

    Kettenbach, A.N. et al. Rapid determination of multiple linear kinase substrate motifs by mass spectrometry. Chem. Biol. 19, 608–618 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Mollica, J.P., Oakhill, J.S., Lamb, G.D. & Murphy, R.M. Are genuine changes in protein expression being overlooked? Reassessing western blotting. Anal. Biochem. 386, 270–275 (2009).

    Article  CAS  Google Scholar 

  32. 32

    Prabakaran, S. et al. Comparative analysis of Erk phosphorylation suggests a mixed strategy for measuring phospho-form distributions. Mol. Syst. Biol. 7, 482 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Goto, H. & Inagaki, M. Production of a site- and phosphorylation state-specific antibody. Nat. Protoc. 2, 2574–2581 (2007).

    Article  CAS  Google Scholar 

  34. 34

    Archuleta, A.J., Stutzke, C.A., Nixon, K.M. & Browning, M.D. Optimized protocol to make phospho-specific antibodies that work. Methods Mol. Biol. 717, 69–88 (2011).

    Article  CAS  Google Scholar 

  35. 35

    Egelhofer, T.A. et al. An assessment of histone-modification antibody quality. Nat. Struct. Mol. Biol. 18, 91–93 (2011).

    Article  CAS  Google Scholar 

  36. 36

    Fuchs, S.M., Krajewski, K., Baker, R.W., Miller, V.L. & Strahl, B.D. Influence of combinatorial histone modifications on antibody and effector protein recognition. Curr. Biol. 21, 53–58 (2011).

    Article  CAS  Google Scholar 

  37. 37

    Bock, I. et al. Detailed specificity analysis of antibodies binding to modified histone tails with peptide arrays. Epigenetics 6, 256–263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Witze, E.S., Old, W.M., Resing, K.A. & Ahn, N.G. Mapping protein post-translational modifications with mass spectrometry. Nat. Methods 4, 798–806 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Kosako, H. & Nagano, K. Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev. Proteomics 8, 81–94 (2011).

    Article  CAS  Google Scholar 

  40. 40

    Nilsson, C.L. Advances in quantitative phosphoproteomics. Anal. Chem. 84, 735–746 (2011).

    Article  CAS  Google Scholar 

  41. 41

    Stasyk, T. & Huber, L.A. Mapping in vivo signal transduction defects by phosphoproteomics. Trends Mol. Med. 18, 43–51 (2012).

    Article  CAS  Google Scholar 

  42. 42

    Boehm, M.E., Seidler, J., Hahn, B. & Lehmann, W.D. Site-specific degree of phosphorylation in proteins measured by liquid chromatography-electrospray mass spectrometry. Proteomics 12, 2167–2178 (2012).

    Article  CAS  Google Scholar 

  43. 43

    Gafken, P.R. & Lampe, P.D. Methodologies for characterizing phosphoproteins by mass spectrometry. Cell Commun. Adhes. 13, 249–262 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Britton, L.M., Gonzales-Cope, M., Zee, B.M. & Garcia, B.A. Breaking the histone code with quantitative mass spectrometry. Expert Rev. Proteomics 8, 631–643 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Diedrich, J.K. & Julian, R.R. Facile identification of phosphorylation sites in peptides by radical directed dissociation. Anal. Chem. 83, 6818–6826 (2011).

    Article  CAS  Google Scholar 

  46. 46

    Taus, T. et al. Universal and confident phosphorylation site localization using phosphoRS. J. Proteome Res. 10, 5354–5362 (2011).

    Article  CAS  Google Scholar 

  47. 47

    Courcelles, M., Bridon, G., Lemieux, S. & Thibault, P. Occurrence and detection of phosphopeptide isomers in large-scale phosphoproteomics experiments. J. Proteome Res. 11, 3753–3765 (2012).

    Article  CAS  Google Scholar 

  48. 48

    Young, N.L., Plazas-Mayorca, M.D. & Garcia, B.A. Systems-wide proteomic characterization of combinatorial post-translational modification patterns. Expert Rev. Proteomics 7, 79–92 (2010).

    Article  CAS  Google Scholar 

  49. 49

    Sidoli, S., Cheng, L. & Jensen, O.N. Proteomics in chromatin biology and epigenetics: Elucidation of post-translational modifications of histone proteins by mass spectrometry. J. Proteomics 75, 3419–3433 (2012).

    Article  CAS  Google Scholar 

  50. 50

    Kettenbach, A.N., Rush, J. & Gerber, S.A. Absolute quantification of protein and post-translational modification abundance with stable isotope-labeled synthetic peptides. Nat. Protoc. 6, 175–186 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Singh, S.A. et al. FLEXIQinase, a mass spectrometry–based assay, to unveil multikinase mechanisms. Nat. Methods 9, 504–508 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Cordier, F. et al. Ordered phosphorylation events in two independent cascades of the PTEN C-tail revealed by NMR. J. Am. Chem. Soc. 134, 20533–20543 (2012).

    Article  CAS  Google Scholar 

  53. 53

    Landrieu, I. et al. Molecular implication of PP2A and Pin1 in the Alzheimer's disease specific hyperphosphorylation of Tau. PLoS ONE 6, e21521 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Gallego, M. & Virshup, D.M. Protein serine/threonine phosphatases: life, death, and sleeping. Curr. Opin. Cell Biol. 17, 197–202 (2005).

    Article  CAS  Google Scholar 

  55. 55

    Shi, Y. Serine/threonine phosphatases: mechanism through structure. Cell 139, 468–484 (2009).

    Article  CAS  Google Scholar 

  56. 56

    Virshup, D.M. & Shenolikar, S. From promiscuity to precision: protein phosphatases get a makeover. Mol. Cell 33, 537–545 (2009).

    Article  CAS  Google Scholar 

  57. 57

    Purvis, J.E. & Lahav, G. Encoding and decoding cellular information through signaling dynamics. Cell 152, 945–956 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Deshmukh, L., Meller, N., Alder, N., Byzova, T. & Vinogradova, O. Tyrosine phosphorylation as a conformational switch: a case study of integrin beta3 cytoplasmic tail. J. Biol. Chem. 286, 40943–40953 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Smet-Nocca, C., Launay, H., Wieruszeski, J.M., Lippens, G. & Landrieu, I. Unraveling a phosphorylation event in a folded protein by NMR spectroscopy: phosphorylation of the Pin1 WW domain by PKA. J. Biomol. NMR 55, 323–337 (2013).

    Article  CAS  Google Scholar 

  60. 60

    West, X.Z. et al. Integrin β3 crosstalk with VEGFR accommodating tyrosine phosphorylation as a regulatory switch. PLoS ONE 7, e31071 (2013).

    Article  CAS  Google Scholar 

  61. 61

    Zhang, Y. et al. Structure, phosphorylation and U2AF65 binding of the N-terminal domain of splicing factor 1 during 3'-splice site recognition. Nucleic Acids Res. 41, 1343–1354 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Iakoucheva, L.M. et al. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 32, 1037–1049 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Gu, B. & Zhu, W.G. Surf the post-translational modification network of p53 regulation. Int. J. Biol. Sci. 8, 672–684 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64

    Landrieu, I. et al. NMR analysis of a Tau phosphorylation pattern. J. Am. Chem. Soc. 128, 3575–3583 (2006).

    Article  CAS  Google Scholar 

  65. 65

    Bienkiewicz, E.A. & Lumb, K.J. Random-coil chemical shifts of phosphorylated amino acids. J. Biomol. NMR 15, 203–206 (1999).

    Article  CAS  Google Scholar 

  66. 66

    Ulrich, E.L. et al. BioMagResBank. Nucleic Acids Res. 36, D402–D408 (2008).

    Article  CAS  Google Scholar 

  67. 67

    Guerry, P. & Herrmann, T. Advances in automated NMR protein structure determination. Q. Rev. Biophys. 44, 257–309 (2011).

    Article  CAS  Google Scholar 

  68. 68

    Hiller, S., Wasmer, C., Wider, G. & Wuthrich, K. Sequence-specific resonance assignment of soluble nonglobular proteins by 7D APSY-NMR spectroscopy. J. Am. Chem. Soc. 129, 10823–10828 (2007).

    Article  CAS  Google Scholar 

  69. 69

    Zawadzka-Kazimierczuk, A., Kozminski, W., Sanderova, H. & Krasny, L. High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins. J. Biomol. NMR 52, 329–337 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Bagai, I., Ragsdale, S.W. & Zuiderweg, E.R. Pseudo-4D triple-resonance experiments to resolve HN overlap in the backbone assignment of unfolded proteins. J. Biomol. NMR 49, 69–74 (2011).

    Article  CAS  Google Scholar 

  71. 71

    Bermel, W. et al. Speeding up sequence specific assignment of IDPs. J. Biomol. NMR 53, 293–301 (2012).

    Article  CAS  Google Scholar 

  72. 72

    Novacek, J. et al. 5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion. J. Biomol. NMR 50, 1–11 (2011).

    Article  CAS  Google Scholar 

  73. 73

    Theillet, F.X., Binolfi, A., Liokatis, S., Verzini, S. & Selenko, P. Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins. J. Biomol. NMR 51, 487–495 (2011).

    Article  CAS  Google Scholar 

  74. 74

    Bai, Y., Milne, J.S., Mayne, L. & Englander, S.W. Primary structure effects on peptide group hydrogen exchange. Proteins 17, 75–86 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Murray-Zmijewski, F., Slee, E.A. & Lu, X. A complex barcode underlies the heterogeneous response of p53 to stress. Nat. Rev. Mol. Cell Biol. 9, 702–712 (2008).

    Article  CAS  Google Scholar 

  76. 76

    Vousden, K.H. & Ryan, K.M. p53 and metabolism. Nat. Rev. Cancer 9, 691–700 (2009).

    Article  CAS  Google Scholar 

  77. 77

    Menendez, D., Inga, A. & Resnick, M.A. The expanding universe of p53 targets. Nat. Rev. Cancer 9, 724–737 (2009).

    Article  CAS  Google Scholar 

  78. 78

    Kruse, J.P. & Gu, W. Modes of p53 regulation. Cell 137, 609–622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Wong, T.S. et al. Physical and functional interactions between human mitochondrial single-stranded DNA-binding protein and tumour suppressor p53. Nucleic Acids Res. 37, 568–581 (2009).

    Article  CAS  Google Scholar 

  80. 80

    Shieh, S.Y., Ikeda, M., Taya, Y. & Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325–334 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Lees-Miller, S.P., Sakaguchi, K., Ullrich, S.J., Appella, E. & Anderson, C.W. Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol. Cell Biol. 12, 5041–5049 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Venerando, A. et al. Isoform specific phosphorylation of p53 by protein kinase CK1. Cell Mol. Life Sci. 67, 1105–1118 (2010).

    Article  CAS  Google Scholar 

  83. 83

    Saito, S. et al. Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J. Biol. Chem. 278, 37536–37544 (2003).

    Article  CAS  Google Scholar 

  84. 84

    Putz, M.V., Lacrama, A.M. & Ostafe, V. Full analytic progress curves of enzymic reactions in vitro. Int. J. Mol. Sci. 7, 469–484 (2006).

    Article  CAS  Google Scholar 

Download references


We thank P. Schmieder and M. Beerbaum for excellent maintenance of NMR infrastructure. We also thank F. Cordier for many insightful discussions, G. Lippens for expert advice and all members of the Selenko laboratory for carefully reading the manuscript and providing helpful comments. F.-X.T. was supported by a grant from the Association pour la Recherche sur le Cancer (ARC). P.S. acknowledges support by an Emmy Noether research grant (SE1-1/1794) by the Deutsche Forschungsgemeinschaft (DFG).

Author information




F.-X.T., H.M.R., S.L., A.B., R.T., M.S. and P.S. devised and executed the experiments. Specifically, F.-X.T., H.M.R. and M.S. prepared cell extracts and measured in-extract phosphorylation reactions; F.-X.T., S.L., A.B. and R.T. performed in vitro phosphorylation measurements; and F.-X.T., H.M.R. and M.S. performed western blotting. F.-X.T., H.M.R. and P.S. prepared figures and wrote the manuscript. All authors carefully read the manuscript and approved of the conclusions drawn therein.

Corresponding author

Correspondence to Philipp Selenko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Theillet, FX., Rose, H., Liokatis, S. et al. Site-specific NMR mapping and time-resolved monitoring of serine and threonine phosphorylation in reconstituted kinase reactions and mammalian cell extracts. Nat Protoc 8, 1416–1432 (2013).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing