Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Constructing droplet interface bilayers from the contact of aqueous droplets in oil

Abstract

We describe a protocol for forming an artificial lipid bilayer by contacting nanoliter aqueous droplets in an oil solution in the presence of phospholipids. A lipid monolayer forms at each oil-water interface, and when two such monolayers touch, a bilayer is created. Droplet interface bilayers (DIBs) are a simple way to generate stable bilayers suitable for single-channel electrophysiology and optical imaging from a wide variety of preparations, ranging from purified proteins to reconstituted eukaryotic cell membrane fragments. Examples include purified proteins from the α-hemolysin pore from Staphylococcus aureus, the anthrax toxin pore and the 1.2-MDa mouse mechanosensitive channel MmPiezo1. Ion channels and ionotropic receptors can also be reconstituted from membrane fragments without further purification. We describe two approaches for forming DIBs. In one approach, a lipid bilayer is created between two aqueous droplets submerged in oil. In the other approach, a membrane is formed between an aqueous droplet and an agarose hydrogel, which allows imaging in addition to electrical recordings. The protocol takes <30 min, including droplet generation, monolayer assembly and bilayer formation. In addition to the main protocol, we also describe the preparation of Ag/AgCl electrodes and sample preparation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Images illustrating the formation of droplet-droplet bilayers and droplet-hydrogel bilayers.
Figure 2: Bright-field images of droplet bilayers formed under various lipid conditions.
Figure 3: Device construction for droplet-hydrogel DIBs.
Figure 4: Optical and electrical measurement of droplets.
Figure 5: Stability and lifetime data from 300-nl droplet hydrogel bilayers of aqueous buffer (Tris-HCl pH 8.0, 0.5 M NaCl) formed in a range of concentrations of DPhPC lipid (32 droplets at each lipid concentration).

Similar content being viewed by others

References

  1. Sackmann, E. Supported membranes: scientific and practical applications. Science 271, 43–48 (1996).

    Article  CAS  Google Scholar 

  2. Dzieciol, A.J. & Mann, S. Designs for life: protocell models in the laboratory. Chem. Soc. Rev. 41, 79–85 (2012).

    Article  CAS  Google Scholar 

  3. Fendler, J.H. Atomic and molecular clusters in membrane mimetic chemistry. Chem. Rev. 87, 877–899 (1987).

    Article  CAS  Google Scholar 

  4. Decher, G. Membranes and more. Membrane-mimetic approach to advanced materials. Adv. Mater. 7, 421 (1995).

    Article  Google Scholar 

  5. Chang, T. Artificial cells in medicine and biotechnology. Appl. Biochem. Biotechnol. 10, 5–24 (1984).

    Article  CAS  Google Scholar 

  6. Thutupalli, S., Herminghaus, S. & Seemannc, R. Bilayer membranes in micro-fluidics: from gel emulsions to soft functional devices. Soft Matter 7, 1312–1320 (2011).

    Article  CAS  Google Scholar 

  7. Castell, O.K., Berridge, J. & Wallace, M.I. Quantification of membrane protein inhibition by optical ion flux in a droplet interface bilayer array. Angew. Chem. Int. Ed. Engl. 51, 3134–3138 (2012).

    Article  CAS  Google Scholar 

  8. Syeda, R., Holden, M.A., Hwang, W.L. & Bayley, H. Screening blockers against a potassium channel with a droplet interface bilayer array. J. Am. Chem. Soc. 130, 15543–15548 (2008).

    Article  CAS  Google Scholar 

  9. Castellana, E.T. & Cremer, P.S. Solid supported lipid bilayers: from biophysical studies to sensor design. Surf. Sci. Rep. 61, 429–444 (2006).

    Article  CAS  Google Scholar 

  10. Tanaka, M. & Sackmann, E. Polymer-supported membranes as models of the cell surface. Nature 437, 656–663 (2005).

    Article  CAS  Google Scholar 

  11. Tamm, L.K. & McConnell, H.M. Supported phospholipid bilayers. Biophys. J. 47, 105–113 (1985).

    Article  CAS  Google Scholar 

  12. Dewa, T. et al. Lateral organization of a membrane protein in a supported binary lipid domain: direct observation of the organization of bacterial light-harvesting complex 2 by total internal reflection fluorescence microscopy. Langmuir 22, 5412–5418 (2006).

    Article  CAS  Google Scholar 

  13. Atanasov, V. et al. Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces. Biophys. J. 89, 1780–1788 (2005).

    Article  CAS  Google Scholar 

  14. Rawle, R.J., van Lengerich, B., Chung, M., Bendix, P.M. & Boxer, S.G. Vesicle fusion observed by content transfer across a tethered lipid bilayer. Biophys. J. 101, L37–L39.

  15. Mueller, P., Rudin, D.O., Ti Tien, H. & Wescott, W.C. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194, 979–980 (1962).

    Article  CAS  Google Scholar 

  16. Montal, M. & Mueller, P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. USA 69, 3561–3566 (1972).

    Article  CAS  Google Scholar 

  17. Cheng, H.T. & London, E. Preparation and properties of asymmetric large unilamellar vesicles: interleaflet coupling in asymmetric vesicles is dependent on temperature but not curvature. Biophys. J. 100, 2671–2678 (2011).

    Article  CAS  Google Scholar 

  18. Richmond, D.L. et al. Forming giant vesicles with controlled membrane composition, asymmetry, and contents. Proc. Natl. Acad. Sci. USA 108, 9431–9436 (2011).

    Article  CAS  Google Scholar 

  19. Szoka Jr., F. & Papahadjopoulos, D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu. Rev. Biophys. Bioeng. 9, 467–508 (1980).

    Article  CAS  Google Scholar 

  20. Bayley, H. et al. Droplet interface bilayers. Mol. Biosyst. 4, 1191–1208 (2008).

    Article  CAS  Google Scholar 

  21. Holden, M.A., Needham, D. & Bayley, H. Functional bionetworks from nanoliter water droplets. J. Am. Chem. Soc. 129, 8650–8655 (2007).

    Article  CAS  Google Scholar 

  22. Maglia, G. et al. Droplet networks with incorporated protein diodes show collective properties. Nat. Nanotechnol. 4, 437–440 (2009).

    Article  CAS  Google Scholar 

  23. Hwang, W.L., Chen, M., Cronin, B., Holden, M.A. & Bayley, H. Asymmetric droplet interface bilayers. J. Am. Chem. Soc. 130, 5878–5879 (2008).

    Article  CAS  Google Scholar 

  24. Gross, L.C., Castell, O.K. & Wallace, M.I. Dynamic and reversible control of 2D membrane protein concentration in a droplet interface bilayer. Nano Lett. 11, 3324–3328 (2011).

    Article  CAS  Google Scholar 

  25. Heron, A.J., Thompson, J.R., Cronin, B., Bayley, H. & Wallace, M.I. Simultaneous measurement of ionic current and fluorescence from single protein pores. J. Am. Chem. Soc. 131, 1652–1653 (2009).

    Article  CAS  Google Scholar 

  26. Heron, A.J., Thompson, J.R., Mason, A.E. & Wallace, M.I. Direct detection of membrane channels from gels using water-in-oil droplet bilayers. J. Am. Chem. Soc. 129, 16042–16047 (2007).

    Article  CAS  Google Scholar 

  27. Leptihn, S., Thompson, J.R., Ellory, J.C., Tucker, S.J. & Wallace, M.I. In vitro reconstitution of eukaryotic ion channels using droplet interface bilayers. J. Am. Chem. Soc. 133, 9370–9375 (2011).

    Article  CAS  Google Scholar 

  28. Funakoshi, K., Suzuki, H. & Takeuchi, S. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal. Chem. 78, 8169–8174 (2006).

    Article  CAS  Google Scholar 

  29. Malmstadt, N., Nash, M.A., Purnell, R.F. & Schmidt, J.J. Automated formation of lipid-bilayer membranes in a microfluidic device. Nano Lett. 6, 1961–1965 (2006).

    Article  CAS  Google Scholar 

  30. Jeon, T.J., Malmstadt, N., Poulos, J.L. & Schmidt, J.J. Black lipid membranes stabilized through substrate conjugation to a hydrogel. Biointerphases 3, FA96 (2008).

    Article  Google Scholar 

  31. Poulos, J.L., Portonovo, S.A., Bang, H. & Schmidt, J.J. Automatable lipid bilayer formation and ion channel measurement using sessile droplets. J. Phys. Condens. Matter. 22, 454105 (2010).

    Article  CAS  Google Scholar 

  32. Poulos, J.L. et al. Ion channel and toxin measurement using a high-throughput lipid membrane platform. Biosens. Bioelectron. 24, 1806–1810 (2009).

    Article  CAS  Google Scholar 

  33. Takinoue, M. & Takeuchi, S. Droplet microfluidics for the study of artificial cells. Anal. Bioanal. Chem. 400, 1705–1716 (2011).

    Article  CAS  Google Scholar 

  34. Coste, B. et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483, 176–181 (2012).

    Article  CAS  Google Scholar 

  35. Sarles, S.A. & Leo, D.J. Physical encapsulation of droplet interface bilayers for durable, portable biomolecular networks. Lab. Chip 10, 710–717 (2010).

    Article  CAS  Google Scholar 

  36. Jeon, T.J., Poulos, J.L. & Schmidt, J.J. Long-term storable and shippable lipid bilayer membrane platform. Lab. Chip 8, 1742–1744 (2008).

    Article  CAS  Google Scholar 

  37. Stanley, C.E. et al. A microfluidic approach for high-throughput droplet interface bilayer (DIB) formation. Chem. Commun. 46, 1620–1622 (2010).

    Article  CAS  Google Scholar 

  38. Jason, L.P., Wyatt, C.N., Tae-Joon, J., Chang-Jin, C.J.K. & Jacob, J.S. Electrowetting on dielectric-based microfluidics for integrated lipid bilayer formation and measurement. Appl. Phys. Lett. 95, 013706 (2009).

    Article  Google Scholar 

  39. Hu, P.C., Li, S. & Malmstadt, N. Microfluidic fabrication of asymmetric giant lipid vesicles. ACS Appl. Mater. Interfaces 3, 1434–1440 (2011).

    Article  CAS  Google Scholar 

  40. Dixit, S.S., Kim, H., Vasilyev, A., Eid, A. & Faris, G.W. Light-driven formation and rupture of droplet bilayers. Langmuir 26, 6193–6200 (2010).

    Article  CAS  Google Scholar 

  41. Punnamaraju, S., You, H. & Steckl, A.J. Triggered release of molecules across droplet interface bilayer lipid membranes using photopolymerizable lipids. Langmuir 28, 7657–7664 (2012).

    Article  CAS  Google Scholar 

  42. Portonovo, S.A. & Schmidt, J. Masking apertures enabling automation and solution exchange in sessile droplet lipid bilayers. Biomed. Microdevices 14, 187–191 (2012).

    Article  CAS  Google Scholar 

  43. Punnamaraju, S. & Steckl, A.J. Voltage control of droplet interface bilayer lipid membrane dimensions. Langmuir 27, 618–626 (2011).

    Article  CAS  Google Scholar 

  44. Gross, L.C., Heron, A.J., Baca, S.C. & Wallace, M.I. Determining membrane capacitance by dynamic control of droplet interface bilayer area. Langmuir 27, 14335–14342 (2011).

    Article  CAS  Google Scholar 

  45. Huang, J., Lein, M., Gunderson, C. & Holden, M.A. Direct quantitation of peptide-mediated protein transport across a droplet-interface bilayer. J. Am. Chem. Soc. 133, 15818–15821 (2011).

    Article  CAS  Google Scholar 

  46. Fischer, A., Holden, M.A., Pentelute, B.L. & Collier, R.J. Ultrasensitive detection of protein translocated through toxin pores in droplet-interface bilayers. Proc. Natl. Acad. Sci USA 108, 16577–16581 (2011).

    Article  CAS  Google Scholar 

  47. Thompson, J.R., Heron, A.J., Santoso, Y. & Wallace, M.I. Enhanced stability and fluidity in droplet on hydrogel bilayers for measuring membrane protein diffusion. Nano Lett. 7, 3875–3878 (2007).

    Article  CAS  Google Scholar 

  48. Xu, J., Sigworth, F.J. & LaVan, D.A. Synthetic protocells to mimic and test cell function. Adv. Mater. 22, 120–127 (2010).

    Article  CAS  Google Scholar 

  49. Harriss, L.M., Cronin, B., Thompson, J.R. & Wallace, M.I. Imaging multiple conductance states in an alamethicin pore. J. Am. Chem. Soc. 133, 14507–14509 (2011).

    Article  CAS  Google Scholar 

  50. Tien, H.T. & Ottova, A.L. The lipid bilayer concept and its experimental realization: from soap bubbles, kitchen sink, to bilayer lipid membranes. J. Memb. Sci. 189, 83–117 (2001).

    Article  CAS  Google Scholar 

  51. Haverkamp, R. Membrane magic and the magic of membranes: planar lipid bilayers (BLMs) and their applications. Biotechnol. Adv. 22, 311–312 (2004).

    Article  Google Scholar 

  52. Blodgett, K.B. Monomolecular films of fatty acids on glass. J. Am. Chem. Soc. 56, 495–495 (1934).

    Article  CAS  Google Scholar 

  53. Langmuir, I. The constitution and fundamental properties of solids and liquids. II. Liquids.1. J. Am. Chem. Soc. 39, 1848–1906 (1917).

    Article  CAS  Google Scholar 

  54. Petty, M.C. Langmuir-Blodgett Films (Cambridge University Press, 1996).

  55. Morales-Penningston, N.F. et al. GUV preparation and imaging: minimizing artifacts. Biochim. Biophys. Acta. 1798, 1324–1332 (2010).

    Article  CAS  Google Scholar 

  56. Montes, L.R., Alonso, A., Goni, F.M. & Bagatolli, L.A. Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys. J. 93, 3548–3554 (2007).

    Article  CAS  Google Scholar 

  57. Zagnoni, M. Miniaturised technologies for the development of artificial lipid bilayer systems. Lab. Chip 12, 1026–1039 (2012).

    Article  CAS  Google Scholar 

  58. Suzuki, H. & Takeuchi, S. Microtechnologies for membrane protein studies. Anal. Bioanal. Chem. 391, 2695–2702 (2008).

    Article  CAS  Google Scholar 

  59. Aghdaei, S., Sandison, M.E., Zagnoni, M., Green, N.G. & Morgan, H. Formation of artificial lipid bilayers using droplet dielectrophoresis. Lab. Chip 8, 1617–1620 (2008).

    Article  CAS  Google Scholar 

  60. Malmstadt, N., Hoffman, A.S. & Stayton, P.S. 'Smart' mobile affinity matrix for microfluidic immunoassays. Lab. Chip 4, 412–415 (2004).

    Article  CAS  Google Scholar 

  61. White, S.H. Ion Channel Reconstitution (ed. Milller, C.) (Plenum Press, 1986).

  62. Rigaud, J.L. & Levy, D. Reconstitution of membrane proteins into liposomes. Methods Enzymol. 372, 65–86 (2003).

    Article  CAS  Google Scholar 

  63. Paternostre, M.T., Roux, M. & Rigaud, J.L. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by triton X-100, octyl glucoside, and sodium cholate. Biochemistry 27, 2668–2677 (1988).

    Article  CAS  Google Scholar 

  64. Schimerlik, M.I. Overview of membrane protein solubilization. Curr. Protoc. Neurosci. published online; http://dx.doi.org/10.1002/0471142301.ns0509s02 (1 May 2001).

  65. Hanke, W. & Schule, W.R. Planar Lipid Bilayers: Methods and Applications (Academic Press, 1993).

Download references

Acknowledgements

We thank H. Bayley for his comments. This work was funded by the Biotechnology and Biological Sciences Research Council (BBSRC). M.H. is funded by the US National Science Foundation (NSF; CAREER award no. 1253565). M.I.W. is funded by the European Research Council (ERC). B.C. is an Engineering and Physical Sciences Research Council (EPSRC) Life Sciences Interface (LSI) Postdoctoral Fellow.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work. M.H. and E.-H.L. conducted the experiments on droplet-droplet DIBs. L.C.M.G. and S.L. conducted the experiments on droplet-hydrogel DIBs. B.C., S.L. and M.I.W. prepared the figures. J.R.T. helped develop the protocol. S.L., D.P.M., O.K.C., M.H. and M.I.W. wrote the main paper. All authors discussed the results and commented on the manuscript at all stages.

Corresponding author

Correspondence to Mark I Wallace.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leptihn, S., Castell, O., Cronin, B. et al. Constructing droplet interface bilayers from the contact of aqueous droplets in oil. Nat Protoc 8, 1048–1057 (2013). https://doi.org/10.1038/nprot.2013.061

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.061

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing