Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Derivation of extraembryonic endoderm stem (XEN) cells from mouse embryos and embryonic stem cells

Abstract

At the time of implantation in the maternal uterus, the mouse blastocyst possesses an inner cell mass comprising two lineages: epiblast (Epi) and primitive endoderm (PrE). Representative stem cells derived from these two cell lineages can be expanded and maintained indefinitely in vitro as either embryonic stem (ES) or XEN cells, respectively. Here we describe protocols that can be used to establish XEN cell lines. These include the establishment of XEN cells from blastocyst-stage embryos in either standard embryonic or trophoblast stem (TS) cell culture conditions. We also describe protocols for establishing XEN cells directly from ES cells by either retinoic acid and activin-based conversion or by overexpression of the GATA transcription factor Gata6. XEN cells are a useful model of PrE cells, with which they share gene expression, differentiation potential and lineage restriction. The robust protocols for deriving XEN cells described here can be completed within 2–3 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of early embryonic development.
Figure 2: Stem cell types that can be derived and propagated in culture representing the three blastocyst lineages.
Figure 3: Recovery of blastocyst-stage embryos from uteri of adult female mice.
Figure 4: Timeline for XEN cell derivation from mouse blastocysts.
Figure 5: Timeline for cXEN cell derivation from mouse ES cells.

Similar content being viewed by others

References

  1. Schrode, N. et al. Anatomy of a blastocyst: cell behaviors driving cell fate choice and morphogenesis in the early mouse embryo. Genesis Published online; http://dx.doi.org/10.1002/dvg.22368 (25 February 2013).

  2. Tanaka, S., Kunath, T., Hadjantonakis, A.K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075 (1998).

    Article  CAS  Google Scholar 

  3. Kunath, T. et al. Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development 132, 1649–1661 (2005).

    Article  CAS  Google Scholar 

  4. Evans, M.J. & Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  Google Scholar 

  5. Martin, G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638 (1981).

    Article  CAS  Google Scholar 

  6. Artus, J. & Hadjantonakis, A.K. Troika of the mouse blastocyst: lineage segregation and stem cells. Curr. Stem Cell Res. Ther. 7, 78–91 (2012).

    Article  Google Scholar 

  7. Niwa, H. et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123, 917–929 (2005).

    Article  CAS  Google Scholar 

  8. Fujikura, J. et al. Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev. 16, 784–789 (2002).

    Article  CAS  Google Scholar 

  9. Capo-Chichi, C.D. et al. Perception of differentiation cues by GATA factors in primitive endoderm lineage determination of mouse embryonic stem cells. Dev. Biol. 286, 574–586 (2005).

    Article  CAS  Google Scholar 

  10. Soprano, D.R., Teets, B.W. & Soprano, K.J. Role of retinoic acid in the differentiation of embryonal carcinoma and embryonic stem cells. Vitam. Horm. 75, 69–95 (2007).

    Article  CAS  Google Scholar 

  11. Artus, J., Panthier, J.J. & Hadjantonakis, A.K. A role for PDGF signaling in expansion of the extra-embryonic endoderm lineage of the mouse blastocyst. Development 137, 3361–3372 (2010).

    Article  CAS  Google Scholar 

  12. Coucouvanis, E. & Martin, G.R. Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell 83, 279–287 (1995).

    Article  CAS  Google Scholar 

  13. Cho, L.T. et al. Conversion from mouse embryonic to extra-embryonic endoderm stem cells reveals distinct differentiation capacities of pluripotent stem cell states. Development 139, 2866–2877 (2012).

    Article  CAS  Google Scholar 

  14. Niakan, K.K. et al. Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes Dev. 24, 312–326 (2010).

    Article  CAS  Google Scholar 

  15. Lim, C.Y. et al. Sall4 regulates distinct transcription circuitries in different blastocyst-derived stem cell lineages. Cell Stem Cell 3, 543–554 (2008).

    Article  CAS  Google Scholar 

  16. Kang, M., Piliszek, A., Artus, J. & Hadjantonakis, A.K. FGF4 is required for lineage restriction and salt-and-pepper distribution of primitive endoderm factors but not their initial expression in the mouse. Development 140, 267–279 (2013).

    Article  CAS  Google Scholar 

  17. Kruithof-de, Julio M. et al. Regulation of extra-embryonic endoderm stem cell differentiation by Nodal and Cripto signaling. Development 138, 3885–3895 (2011).

    Article  Google Scholar 

  18. Paca, A. et al. BMP signaling induces visceral endoderm differentiation of XEN cells and parietal endoderm. Dev. Biol. 361, 90–102 (2012).

    Article  CAS  Google Scholar 

  19. Artus, J. et al. BMP4 signaling directs primitive endoderm-derived XEN cells to an extraembryonic visceral endoderm identity. Dev. Biol. 361, 245–262 (2012).

    Article  CAS  Google Scholar 

  20. Beddington, R.S. & Robertson, E.J. Anterior patterning in mouse. Trends Genet. 14, 277–284 (1998).

    Article  CAS  Google Scholar 

  21. Beddington, R.S. & Robertson, E.J. Axis development and early asymmetry in mammals. Cell 96, 195–209 (1999).

    Article  CAS  Google Scholar 

  22. Brown, K. et al. eXtraembryonic ENdoderm (XEN) stem cells produce factors that activate heart formation. PloS ONE 5, e13446 (2010).

    Article  Google Scholar 

  23. Liu, W., Brown, K., Legros, S. & Foley, A.C. Nodal mutant eXtraembryonic ENdoderm (XEN) stem cells upregulate markers for the anterior visceral endoderm and impact the timing of cardiac differentiation in mouse embryoid bodies. Biol. Open 1, 208–219 (2012).

    Article  CAS  Google Scholar 

  24. Holtzinger, A., Rosenfeld, G.E. & Evans, T. Gata4 directs development of cardiac-inducing endoderm from ES cells. Dev. Biol. 337, 63–73 (2010).

    Article  CAS  Google Scholar 

  25. Senner, C.E. et al. DNA methylation profiles define stem cell identity and reveal a tight embryonic-extraembryonic lineage boundary. Stem Cells 30, 2732–2745 (2012).

    Article  CAS  Google Scholar 

  26. Kwon, G.S., Viotti, M. & Hadjantonakis, A.K. The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages. Dev. Cell. 15, 509–520 (2008).

    Article  CAS  Google Scholar 

  27. Golding, M.C., Zhang, L. & Mann, M.R. Multiple epigenetic modifiers induce aggressive viral extinction in extraembryonic endoderm stem cells. Cell Stem Cell 6, 457–467 (2010).

    Article  CAS  Google Scholar 

  28. Nagy, A., Gertsenstein, M., Vintersten, K. & Behringer, R. Manipulating the Mouse Embryo: a Laboratory Manual, 3rd edn (Cold Spring Harbor Laboratory Press, 2003).

  29. Lin, T.P. Microsurgery of inner cell mass of mouse blastocysts. Nature 222, 480–481 (1969).

    Article  CAS  Google Scholar 

  30. Himeno, E., Tanaka, S. & Kunath, T. Isolation and manipulation of mouse trophoblast stem cells. Curr. Protoc. Stem Cell Biol. 7, 1E.4.1–1E.4.27 (2008).

    Google Scholar 

  31. Uy, G.D., Downs, K.M. & Gardner, R.L. Inhibition of trophoblast stem cell potential in chorionic ectoderm coincides with occlusion of the ectoplacental cavity in the mouse. Development 129, 3913–3924 (2002).

    CAS  PubMed  Google Scholar 

  32. Davis, R.L., Weintraub, H. & Lassar, A.B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).

    Article  CAS  Google Scholar 

  33. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  34. Shimosato, D., Shiki, M. & Niwa, H. Extra-embryonic endoderm cells derived from ES cells induced by GATA factors acquire the character of XEN cells. BMC Dev. Biol. 7, 80 (2007).

    Article  Google Scholar 

  35. Rugg-Gunn, P.J. et al. Cell-surface proteomics identifies lineage-specific markers of embryo-derived stem cells. Dev. Cell 22, 887–901 (2012).

    Article  CAS  Google Scholar 

  36. Qu, X.B., Pan, J., Zhang, C. & Huang, S.Y. Sox17 facilitates the differentiation of mouse embryonic stem cells into primitive and definitive endoderm in vitro. Dev., Growth Differ. 50, 585–593 (2008).

    Article  CAS  Google Scholar 

  37. Shimoda, M. et al. Sox17 plays a substantial role in late-stage differentiation of the extraembryonic endoderm in vitro. J. Cell Sci. 120, 3859–3869 (2007).

    Article  CAS  Google Scholar 

  38. Aksoy, I. et al. Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm. EMBO J. 32, 938–953 (2013).

    Article  CAS  Google Scholar 

  39. Felgner, P.L. et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84, 7413–7417 (1987).

    Article  CAS  Google Scholar 

  40. De Smedt, S.C., Demeester, J. & Hennink, W.E. Cationic polymer–based gene delivery systems. Pharm. Res. 17, 113–126 (2000).

    Article  CAS  Google Scholar 

  41. Friend, D.S., Papahadjopoulos, D. & Debs, R.J. Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim. Biophys. Acta 1278, 41–50 (1996).

    Article  Google Scholar 

  42. Gao, X. & Huang, L. Cationic liposome-mediated gene transfer. Gene Ther. 2, 710–722 (1995).

    CAS  PubMed  Google Scholar 

  43. Anderson, D.G., Lynn, D.M. & Langer, R. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew. Chem. Int. Ed. Engl. 42, 3153–3158 (2003).

    Article  CAS  Google Scholar 

  44. Li, W. & Szoka, F.C. Jr. Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res. 24, 438–449 (2007).

    Article  Google Scholar 

  45. Doetschman, T. et al. Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330, 576–578 (1987).

    Article  CAS  Google Scholar 

  46. Andreason, G.L. & Evans, G.A. Introduction and expression of DNA molecules in eukaryotic cells by electroporation. Biotechniques 6, 650–660 (1988).

    CAS  PubMed  Google Scholar 

  47. Shigekawa, K. & Dower, W.J. Electroporation of eukaryotes and prokaryotes: a general approach to the introduction of macromolecules into cells. Biotechniques 6, 742–751 (1988).

    CAS  PubMed  Google Scholar 

  48. Cherng, J.Y. et al. Effect of DNA topology on the transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmid complexes. J. Control. Release 60, 343–353 (1999).

    Article  CAS  Google Scholar 

  49. McNally, M.A., Lebkowski, J.S., Okarma, T.B. & Lerch, L.B. Optimizing electroporation parameters for a variety of human hematopoietic cell lines. Biotechniques 6, 882–886 (1988).

    CAS  PubMed  Google Scholar 

  50. Stuchbury, G. & Munch, G. Optimizing the generation of stable neuronal cell lines via pre-transfection restriction enzyme digestion of plasmid DNA. Cytotechnology 62, 189–194 (2010).

    Article  CAS  Google Scholar 

  51. Chung, S. et al. Analysis of different promoter systems for efficient transgene expression in mouse embryonic stem cell lines. Stem Cells 20, 139–145 (2002).

    Article  CAS  Google Scholar 

  52. Koutsourakis, M., Langeveld, A., Patient, R., Beddington, R. & Grosveld, F. The transcription factor GATA6 is essential for early extraembryonic development. Development 126, 723–732 (1999).

    CAS  Google Scholar 

  53. Morrisey, E.E., Ip, H.S., Lu, M.M. & Parmacek, M.S. GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev. Biol. 177, 309–322 (1996).

    Article  CAS  Google Scholar 

  54. Iacovino, M. et al. Inducible cassette exchange: a rapid and efficient system enabling conditional gene expression in embryonic stem and primary cells. Stem Cells 29, 1580–1588 (2011).

    Article  CAS  Google Scholar 

  55. Ting, D.T., Kyba, M. & Daley, G.Q. Inducible transgene expression in mouse stem cells. Methods Mol. Med. 105, 23–46 (2005).

    CAS  PubMed  Google Scholar 

  56. Ding, S. et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122, 473–483 (2005).

    Article  CAS  Google Scholar 

  57. Beddington, R.S. & Robertson, E.J. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105, 733–737 (1989).

    CAS  PubMed  Google Scholar 

  58. Macfarlan, T.S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012).

    Article  CAS  Google Scholar 

  59. Strickland, S., Smith, K.K. & Marotti, K.R. Hormonal induction of differentiation in teratocarcinoma stem cells: generation of parietal endoderm by retinoic acid and dibutyryl cAMP. Cell 21, 347–355 (1980).

    Article  CAS  Google Scholar 

  60. Yasunaga, M. et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat. Biotechnol. 23, 1542–1550 (2005).

    Article  CAS  Google Scholar 

  61. Mesnard, D., Guzman-Ayala, M. & Constam, D.B. Nodal specifies embryonic visceral endoderm and sustains pluripotent cells in the epiblast before overt axial patterning. Development 133, 2497–2505 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Foley, M. Kang and S. Wamaitha for comments on this protocol. Work in our laboratories is supported by the Human Frontier Science Program, US National Institutes of Health (NIH) grants RO1-HD052115 and RO1-DK084391 to A.-K.H.; the New York State Department of Health NYSTEM IDEA grant C024318 to A.-K.H.; and the March of Dimes Foundation Research Grant 1-FY11-436 to K.K.N. L.T.Y.C. is supported by a Medical Research Council (MRC) capacity-building studentship. K.K.N. is supported by a Centre for Trophoblast Research Next Generation Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

K.K.N. and A.-K.H. outlined the protocol. K.K.N., N.S. and A.-K.H. wrote the protocol manuscript with the help of L.T.Y.C.

Corresponding authors

Correspondence to Kathy K Niakan or Anna-Katerina Hadjantonakis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Molecular characteristics of XEN cell lines. Immunofluorescence analysis of mouse ES cells (mESCs), embryo-derived XEN cells, cXEN cells and iXEN cells generated by Gata6 - overexpression (OE) in mESCs after 6 days. Cell lines were analyzed for the expression of Oct4 (sc-5279, Santa Cruz Biotech, 1:500), Dab2 (SC-13982, Santa Cruz Biotech, 1:500), Gata4 (SC-9053, Santa Cruz Biotech, 1:500) or Sox7 (MAB2766, R&D, 1:500) (red) with DAPI (blue) merge using the method described in reference 14. Scale bars: 100 μm. (PDF 431 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niakan, K., Schrode, N., Cho, L. et al. Derivation of extraembryonic endoderm stem (XEN) cells from mouse embryos and embryonic stem cells. Nat Protoc 8, 1028–1041 (2013). https://doi.org/10.1038/nprot.2013.049

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.049

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing