Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Single-cell analysis and sorting using droplet-based microfluidics

Abstract

We present a droplet-based microfluidics protocol for high-throughput analysis and sorting of single cells. Compartmentalization of single cells in droplets enables the analysis of proteins released from or secreted by cells, thereby overcoming one of the major limitations of traditional flow cytometry and fluorescence-activated cell sorting. As an example of this approach, we detail a binding assay for detecting antibodies secreted from single mouse hybridoma cells. Secreted antibodies are detected after only 15 min by co-compartmentalizing single mouse hybridoma cells, a fluorescent probe and single beads coated with anti-mouse IgG antibodies in 50-pl droplets. The beads capture the secreted antibodies and, when the captured antibodies bind to the probe, the fluorescence becomes localized on the beads, generating a clearly distinguishable fluorescence signal that enables droplet sorting at 200 Hz as well as cell enrichment. The microfluidic system described is easily adapted for screening other intracellular, cell-surface or secreted proteins and for quantifying catalytic or regulatory activities. In order to screen 1 million cells, the microfluidic operations require 2–6 h; the entire process, including preparation of microfluidic devices and mammalian cells, requires 5–7 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Design of microfluidic devices.
Figure 3
Figure 4: Principle of experimental design.
Figure 5: Fluorescence analysis and sorting of droplets.
Figure 6: Schematic of the optical setup.
Figure 7: Compartmentalized single hybridoma cells before and after microfluidic sorting.

Similar content being viewed by others

References

  1. Guo, M.T., Rotem, A., Heyman, J.A. & Weitz, D.A. Droplet microfluidics for high-throughput biological assays. Lab Chip 12, 2146–2155 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Kintses, B., van Vliet, L.D., Devenish, S.R. & Hollfelder, F. Microfluidic droplets: new integrated workflows for biological experiments. Curr. Opin. Chem. Biol. 14, 548–555 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Theberge, A.B. et al. Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew. Chem. Int. Ed. 49, 5846–5868 (2010).

    Article  CAS  Google Scholar 

  4. Dove, A. Drug screening--beyond the bottleneck. Nat. Biotechnol. 17, 859–863 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Link, D.R., Anna, S.L., Weitz, D.A. & Stone, H.A. Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 92, 054503 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Mazutis, L., Baret, J.C. & Griffiths, A.D. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion. Lab Chip 9, 2665–2672 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Mazutis, L. & Griffiths, A.D. Selective droplet coalescence using microfluidic systems. Lab Chip 12, 1800–1806 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Ahn, K., Agresti, J., Chong, H., Marquez, M. & Weitz, D.A. Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl. Phys. Lett. 88, 264105–264103 (2006).

    Article  CAS  Google Scholar 

  9. Chabert, M., Dorfman, K.D. & Viovy, J.L. Droplet fusion by alternating current (AC) field electrocoalescence in microchannels. Electrophoresis 26, 3706–3715 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Priest, C., Herminghaus, S. & Seemann, R. Controlled electrocoalescence in microfluidics: targeting a single lamella. Appl. Phys. Lett. 89, 134101 (2006).

    Article  CAS  Google Scholar 

  11. Abate, A.R., Hung, T., Mary, P., Agresti, J.J. & Weitz, D.A. High-throughput injection with microfluidics using picoinjectors. Proc. Natl. Acad. Sci. USA 107, 19163–19166 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li, L. et al. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proc. Natl. Acad. Sci. USA 103, 19243–19248 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Niu, X., Gulati, S., Edel, J.B. & deMello, A.J. Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8, 1837–1841 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Frenz, L., Blank, K., Brouzes, E. & Griffiths, A.D. Reliable microfluidic on-chip incubation of droplets in delay-lines. Lab Chip 9, 1344–1348 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Hatch, A.C. et al. 1-Million droplet array with wide-field fluorescence imaging for digital PCR. Lab Chip 11, 3838–3845 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Shim, J.U. et al. Simultaneous determination of gene expression and enzymatic activity in individual bacterial cells in microdroplet compartments. J. Am. Chem. Soc. 42, 15251–15256 (2009).

    Article  CAS  Google Scholar 

  17. Mazutis, L. et al. Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. Anal. Chem. 81, 4813–4821 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Lichtman, J.W. & Conchello, J.A. Fluorescence microscopy. Nat. Methods 2, 910–919 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Najah, M., Griffiths, A.D. & Ryckelynck, M. Teaching single-cell digital analysis using droplet-based microfluidics. Anal. Chem. 84, 1202–1209 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Ahn, K. et al. Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl. Phys. Lett. 88, 024104 (2006).

    Article  CAS  Google Scholar 

  21. Franke, T., Abate, A.R., Weitz, D.A. & Wixforth, A. Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab Chip 9, 2625–2627 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Debs, B.E., Utharala, R., Balyasnikova, I.V., Griffiths, A.D. & Merten, C.A. Functional single-cell hybridoma screening using droplet-based microfluidics. Proc. Natl. Acad. Sci. USA 109, 11570–11575 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Granieri, L., Baret, J.C., Griffiths, A.D. & Merten, C.A. High-throughput screening of enzymes by retroviral display using droplet-based microfluidics. Chem. Biol. 17, 229–235 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. He, M. et al. Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal. Chem. 77, 1539–1544 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Clausell-Tormos, J. et al. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem. Biol. 15, 427–437 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Koster, S. et al. Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8, 1110–1115 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Brouzes, E. et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc. Natl. Acad. Sci. USA 106, 14195–14200 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu, W., Kim, H.J., Lucchetta, E.M., Du, W. & Ismagilov, R.F. Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. Lab Chip 9, 2153–2162 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hufnagel, H. et al. An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets. Lab Chip 9, 1576–1582 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Zeng, Y., Novak, R., Shuga, J., Smith, M.T. & Mathies, R.A. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal. Chem. 82, 3183–3190 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rane, T.D., Zec, H.C., Puleo, C., Lee, A.P. & Wang, T.H. Droplet microfluidics for amplification-free genetic detection of single cells. Lab Chip 12, 3341–3347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huebner, A. et al. Development of quantitative cell-based enzyme assays in microdroplets. Anal. Chem. 80, 3890–3896 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Baret, J.C., Beck, Y., Billas-Massobrio, I., Moras, D. & Griffiths, A.D. Quantitative cell-based reporter gene assays using droplet-based microfluidics. Chem. Biol. 17, 528–536 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Huebner, A. et al. Quantitative detection of protein expression in single cells using droplet microfluidics. Chem. Commun. (Camb) 28, 1218–1220 (2007).

    Article  CAS  Google Scholar 

  35. Chen, D. et al. The chemistrode: a droplet-based microfluidic device for stimulation and recording with high temporal, spatial, and chemical resolution. Proc. Natl. Acad. Sci. USA 105, 16843–16848 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Niu, X., Gielen, F., Edel, J.B. & deMello, A.J. A microdroplet dilutor for high-throughput screening. Nat. Chem. 3, 437–442 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Mazutis, L. et al. Multi-step microfluidic droplet processing: kinetic analysis of an in vitro–translated enzyme. Lab Chip 9, 2902–2908 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Pekin, D. et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11, 2156–2166 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Zhong, Q. et al. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab Chip 11, 2167–2174 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Hindson, B.J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tewhey, R. et al. Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat. Biotechnol. 27, 1025–1031 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miller, O.J. et al. High-resolution dose-response screening using droplet-based microfluidics. Proc. Natl. Acad. Sci. USA 109, 378–383 (2012).

    Article  PubMed  Google Scholar 

  43. Clausell-Tormos, J., Griffiths, A.D. & Merten, C.A. An automated two-phase microfluidic system for kinetic analyses and the screening of compound libraries. Lab Chip 10, 1302–1307 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Churski, K. et al. Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab Chip 12, 1629–1637 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Agresti, J.J. et al. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl. Acad. Sci. USA 107, 4004–4009 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kintses, B. et al. Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. Chem. Biol. 19, 1001–1009 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Paegel, B.M. & Joyce, G.F. Microfluidic compartmentalized directed evolution. Chem. Biol. 17, 717–724 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lowe, K.C. Perfluorochemical respiratory gas carriers: benefits to cell culture systems. J. Fluorine Chem. 118, 19–26 (2002).

    Article  CAS  Google Scholar 

  49. Scott, R.L. The solubility of fluorocarbons. J. Am. Chem. Soc. 70, 4090–4093 (1948).

    Article  CAS  PubMed  Google Scholar 

  50. Simons, J.H. & Linevsky, M.J. The solubility of organic solids in fluorocarbon derivatives. J. Am. Chem. Soc. 74, 4750–4751 (1952).

    Article  CAS  Google Scholar 

  51. Tawfik, D.S. & Griffiths, A.D. Man-made cell-like compartments for molecular evolution. Nat. Biotechnol. 16, 652–656 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Baret, J.C. et al. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9, 1850–1858 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Martino, C. et al. Intracellular protein determination using droplet-based immunoassays. Anal. Chem. 83, 5361–5368 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Beer, N.R. et al. On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets. Anal. Chem. 80, 1854–1858 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Schaerli, Y. et al. Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Anal. Chem. 81, 302–306 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Beer, N.R. et al. On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets. Anal. Chem. 79, 8471–8475 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Olsen, M.J. et al. Function-based isolation of novel enzymes from a large library. Nat. Biotechnol. 18, 1071–1074 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Aharoni, A. et al. High-throughput screening methodology for the directed evolution of glycosyltransferases. Nat. Methods 3, 609–614 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Unger, M.A., Chou, H.P., Thorsen, T., Scherer, A. & Quake, S.R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Weinstein, J.A., Jiang, N., White, R.A. III, Fisher, D.S. & Quake, S.R. High-throughput sequencing of the zebrafish antibody repertoire. Science 324, 807–810 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fan, H.C., Wang, J., Potanina, A. & Quake, S.R. Whole-genome molecular haplotyping of single cells. Nat. Biotechnol. 29, 51–57 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Lecault, V. et al. High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat. Methods 8, 581–586 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Love, J.C., Ronan, J.L., Grotenbreg, G.M., van der Veen, A.G. & Ploegh, H.L. A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat. Biotechnol. 24, 703–707 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Taly, V., Pekin, D., El Abed, A. & Laurent-Puig, P. Detecting biomarkers with microdroplet technology. Trends Mol. Med. 18, 405–416 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Choi, J.W., Kang, D.K., Park, H., deMello, A.J. & Chang, S.I. High-throughput analysis of protein-protein interactions in picoliter-volume droplets using fluorescence polarization. Anal. Chem. 84, 3849–3854 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Joensson, H.N., Zhang, C., Uhlen, M. & Andersson-Svahn, H. A homogeneous assay for protein analysis in droplets by fluorescence polarization. Electrophoresis 33, 436–439 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Srisa-Art, M., Dyson, E.C., Demello, A.J. & Edel, J.B. Monitoring of real-time streptavidin-biotin binding kinetics using droplet microfluidics. Anal. Chem. 80, 7063–7067 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Cecchini, M.P. et al. Ultrafast surface enhanced resonance Raman scattering detection in droplet-based microfluidic systems. Anal. Chem. 83, 3076–3081 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Reymond, J.L., Fluxa, V.S. & Maillard, N. Enzyme assays. Chem. Commun. 2009, 34–46 (2009).

    Google Scholar 

  70. Joensson, H.N. et al. Detection and analysis of low-abundance cell-surface biomarkers using enzymatic amplification in microfluidic droplets. Angew. Chem. Int. Ed. Engl. 48, 2518–2521 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Xia, Y.N. & Whitesides, G.M. Soft lithography. Angew. Chem. Int. Ed. 37, 551–575 (1998).

    Article  Google Scholar 

  72. Anna, S.L., Bontoux, N. & Stone, H.A. Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 82, 364–366 (2003).

    Article  CAS  Google Scholar 

  73. Garstecki, P., Fuerstman, M.J., Stone, H.A. & Whitesides, G.M. Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6, 437–446 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Abate, A.R. et al. Impact of inlet channel geometry on microfluidic drop formation. Phys. Rev. E 80, 026310 (2009).

    Article  CAS  Google Scholar 

  75. Sugiura, S., Nakajima, M., Iwamoto, S. & Seki, M. Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17, 5562–5566 (2001).

    Article  CAS  Google Scholar 

  76. Baret, J.C. Surfactants in droplet-based microfluidics. Lab Chip 12, 422–433 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Baret, J.C., Kleinschmidt, F., El Harrak, A. & Griffiths, A.D. Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis. Langmuir 25, 6088–6093 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Roach, L.S., Song, H. & Ismagilov, R.F. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants. Anal. Chem. 77, 785–796 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Holtze, C. et al. Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 8, 1632–1639 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, F. et al. Chemical transfection of cells in picoliter aqueous droplets in fluorocarbon oil. Anal. Chem. 83, 8816–8820 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Hudlicky, M. & Pavlath, A.E. Chemistry of Organic Fluorine Compounds. (American Chemical Society, 1995).

  82. Skhiri, Y. Dynamics of molecular transport by surfactants in emulsions. Soft Matter 8, 10618–10627 (2012).

    Article  CAS  Google Scholar 

  83. Woronoff, G. et al. New generation of amino coumarin methyl sulfonate-based fluorogenic substrates for amidase assays in droplet-based microfluidic applications. Anal. Chem. 83, 2852–2857 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Courtois, F. et al. Controlling the retention of small molecules in emulsion microdroplets for use in cell-based assays. Anal. Chem. 81, 3008–3016 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Siegel, A.C. et al. Cofabrication of electromagnets and microfluidic systems in poly(dimethylsiloxane). Angew Chem. Int. Ed. Engl. 45, 6877–6882 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Asmolov, E.S. The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech. 381, 63–87 (1999).

    Article  CAS  Google Scholar 

  87. Di Carlo, D., Irimia, D., Tompkins, R.G. & Toner, M. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. USA 104, 18892–18897 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kemna, E.W.M. et al. High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip 12, 2881–2887 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Ford, T., Graham, J. & Rickwood, D. Iodixanol—a nonionic isosmotic centrifugation medium for the formation of self-generated gradients. Anal. Biochem. 220, 360–366 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Bruce, A.T. et al. Use of iodixanol self-generated density gradients to enrich for viable urothelial cells from nonneurogenic and neurogenic bladder tissue. Tissue Eng. Part C Methods 16, 33–40 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Graziani-Bowering, G.M., Graham, J.M. & Filion, L.G. A quick, easy and inexpensive method for the isolation of human peripheral blood monocytes. J. Immunol. Methods 207, 157–168 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Burgoyne, F. A remote syringe for cells, beads and particle injection in microfluidic channels. http://blogs.rsc.org/chipsandtips/2009/08/20/a-remote-syringe-for-cells-beads-and-particle-injection-in-microfluidic-channels/ (20 August 2009).

  93. Shapiro, H.M. Practical Flow Cytometry. 4th edn. (Wiley-Liss, 2003).

  94. Moon, S., Ceyhan, E., Gurkan, U.A. & Demirci, U. Statistical modeling of single target cell encapsulation. PLoS ONE 6, e21580 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chabert, M. & Viovy, J.L. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proc. Natl. Acad. Sci. USA 105, 3191–3196 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Sperling for the kind gift of surfactant and D. Aubrecht for his help in developing droplet detection and sorting methods. This work was supported by the National Science Foundation (NSF) (DMR-1006546), the National Institutes of Health (NIH) (P01GM096971 and 5R01EB014703-02), the Harvard Materials Science Research and Engineering Center (DMR-0820484) and the Lithuanian Research Council (MIP-048/2012). W.L.U. acknowledges support from a Canadian National Sciences and Engineering Research Council (NSERC) Postgraduate Scholarship (PGS D). J.A.H. and J.G. were supported by NIH SBIR grant no. 1R43AI082861-01. This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the NSF under award no. ECS-0335765. CNS is part of Harvard University.

Author information

Authors and Affiliations

Authors

Contributions

L.M. and J.A.H. performed the experiments described in this protocol, W.L.U. provided the LabVIEW software, L.M., J.A.H. and A.D.G. analyzed the data; J.G. set up the detection system, all authors edited and proofread the paper.

Corresponding authors

Correspondence to Andrew D Griffiths or John A Heyman.

Ethics declarations

Competing interests

The authors are inventors on a patent application (PCT/US2008/008563) including some of the ideas described in this manuscript.

Supplementary information

Supplementary Video 1

Cell and bead co-encapsulation (MOV 353 kb)

Supplementary Video 2

Droplet containing cells and beads reinjection and spacing (MOV 1756 kb)

Supplementary Video 3

Droplet sorting (MOV 495 kb)

Supplementary Data (*dwg format, to be viewed with AutoCAD software)

AutoCad designs of the microfluidic chips (ZIP 1189 kb)

Supplementary Figure 1

Droplet volume as a function of flow rate. Microfluidic channels were 25 μm deep and the design is provided in Supplementary Material and indicated in Figure 2a. The flow rate for the aqueous phase was kept at 180 μl/h, while the flow rate for the continuous phase was varied from 160 μl/h to 300 μl/h (PDF 285 kb)

Supplementary Note

Plate-based sandwich assay to measure secreted antibody (PDF 258 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazutis, L., Gilbert, J., Ung, W. et al. Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8, 870–891 (2013). https://doi.org/10.1038/nprot.2013.046

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.046

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing