Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantifying the transcriptional output of single alleles in single living mammalian cells

Abstract

Transcription kinetics of actively transcribing genes in vivo have generally been measured using tandem gene arrays. However, tandem arrays do not reflect the endogenous state of genome organization in which genes appear as single alleles. Here we present a robust technique for the quantification of mRNA synthesis from a single allele in real time in single living mammalian cells. The protocol describes how to generate cell clones harboring an MS2-tagged allele and how to detect in vivo transcription from this tagged allele at high spatial and temporal resolution throughout the cell cycle. Quantification of nascent mRNAs produced from the single tagged allele is performed using RNA fluorescence in situ hybridization (FISH) and live-cell imaging. Subsequent analyses and data modeling detailed in the protocol include measurements of transcription rates of RNA polymerase II, determination of the number of polymerases recruited to the tagged allele and measurement of the spacing between polymerases. Generation of the cells containing the single tagged alleles should take up to 1 month; RNA FISH or live-cell imaging will require an additional week.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of a cell system expressing a single GOI-MS2 allele.
Figure 2: Detection and quantification of GOI-MS2 mRNAs by RNA FISH.
Figure 3: Following transcription kinetics of the GOI-MS2 allele in real-time.

Similar content being viewed by others

References

  1. Alwine, J.C., Kemp, D.J. & Stark, G.R. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc. Natl. Acad. Sci. USA 74, 5350–5354 (1977).

    Article  CAS  Google Scholar 

  2. Holland, P.M., Abramson, R.D., Watson, R. & Gelfand, D.H. Detection of specific polymerase chain reaction product by utilizing the 5′----3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA 88, 7276–7280 (1991).

    Article  CAS  Google Scholar 

  3. Heid, C.A., Stevens, J., Livak, K.J. & Williams, P.M. Real time quantitative PCR. Genome Res. 6, 986–994 (1996).

    Article  CAS  Google Scholar 

  4. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  5. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  Google Scholar 

  6. Levsky, J.M. & Singer, R.H. Gene expression and the myth of the average cell. Trends Cell Biol. 13, 4–6 (2003).

    Article  CAS  Google Scholar 

  7. Levsky, J.M. & Singer, R.H. Fluorescence in situ hybridization: past, present and future. J. Cell Sci. 116, 2833–2838 (2003).

    Article  CAS  Google Scholar 

  8. Femino, A.M., Fay, F.S., Fogarty, K. & Singer, R.H. Visualization of single RNA transcripts in situ. Science 280, 585–590 (1998).

    Article  CAS  Google Scholar 

  9. Miyawaki, A. Proteins on the move: insights gained from fluorescent protein technologies. Nat. Rev. Mol. Cell Biol. 12, 656–668 (2011).

    Article  CAS  Google Scholar 

  10. Wu, B., Piatkevich, K.D., Lionnet, T., Singer, R.H. & Verkhusha, V.V. Modern fluorescent proteins and imaging technologies to study gene expression, nuclear localization, and dynamics. Curr. Opin. Cell Biol. 23, 310–317 (2011).

    Article  CAS  Google Scholar 

  11. Darzacq, X. et al. Imaging transcription in living cells. Annu. Rev. Biophys. 38, 173–196 (2009).

    Article  CAS  Google Scholar 

  12. Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998).

    Article  CAS  Google Scholar 

  13. Robinett, C.C. et al. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135, 1685–1700 (1996).

    Article  CAS  Google Scholar 

  14. Fusco, D. et al. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr. Biol. 13, 161–167 (2003).

    Article  CAS  Google Scholar 

  15. Shav-Tal, Y. et al. Dynamics of single mRNPs in nuclei of living cells. Science 304, 1797–1800 (2004).

    Article  CAS  Google Scholar 

  16. Hager, G.L., McNally, J.G. & Misteli, T. Transcription dynamics. Mol. Cell 35, 741–753 (2009).

    Article  CAS  Google Scholar 

  17. Li, G.W. & Xie, X.S. Central dogma at the single-molecule level in living cells. Nature 475, 308–315 (2011).

    Article  CAS  Google Scholar 

  18. Shav-Tal, Y., Singer, R.H. & Darzacq, X. Imaging gene expression in single living cells. Nat. Rev. Mol. Cell Biol. 5, 855–861 (2004).

    Article  CAS  Google Scholar 

  19. Rafalska-Metcalf, I.U. & Janicki, S.M. Show and tell: visualizing gene expression in living cells. J. Cell Sci. 120, 2301–2307 (2007).

    Article  CAS  Google Scholar 

  20. Brody, Y. et al. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLoS Biol. 9, e1000573 (2011).

    Article  CAS  Google Scholar 

  21. Zhao, R., Nakamura, T., Fu, Y., Lazar, Z. & Spector, D.L. Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation. Nat. Cell Biol. 13, 1295–1304 (2011).

    Article  CAS  Google Scholar 

  22. Boireau, S. et al. The transcriptional cycle of HIV-1 in real-time and live cells. J. Cell Biol. 179, 291–304 (2007).

    Article  CAS  Google Scholar 

  23. Larson, D.R., Zenklusen, D., Wu, B., Chao, J.A. & Singer, R.H. Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332, 475–478 (2011).

    Article  CAS  Google Scholar 

  24. Yunger, S., Rosenfeld, L., Garini, Y. & Shav-Tal, Y. Single-allele analysis of transcription kinetics in living mammalian cells. Nat. Methods 7, 631–633 (2010).

    Article  CAS  Google Scholar 

  25. Lionnet, T. et al. A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat. Methods 8, 165–170 (2011).

    Article  CAS  Google Scholar 

  26. Ben-Ari, Y. et al. The life of an mRNA in space and time. J. Cell Sci. 123, 1761–1774 (2010).

    Article  CAS  Google Scholar 

  27. Huranova, M. et al. The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells. J. Cell Biol. 191, 75–86 (2010).

    Article  CAS  Google Scholar 

  28. Schmidt, U. et al. Real-time imaging of cotranscriptional splicing reveals a kinetic model that reduces noise: implications for alternative splicing regulation. J. Cell Biol. 193, 819–829 (2011).

    Article  CAS  Google Scholar 

  29. Maiuri, P. et al. Fast transcription rates of RNA polymerase II in human cells. EMBO Rep. 12, 1280–1285 (2011).

    Article  CAS  Google Scholar 

  30. Golding, I. & Cox, E.C. RNA dynamics in live Escherichia coli cells. Proc. Natl. Acad. Sci. USA 101, 11310–11315 (2004).

    Article  CAS  Google Scholar 

  31. Golding, I., Paulsson, J., Zawilski, S.M. & Cox, E.C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 (2005).

    Article  CAS  Google Scholar 

  32. Yao, J., Munson, K.M., Webb, W.W. & Lis, J.T. Dynamics of heat shock factor association with native gene loci in living cells. Nature 442, 1050–1053 (2006).

    Article  CAS  Google Scholar 

  33. Chubb, J.R., Trcek, T., Shenoy, S.M. & Singer, R.H. Transcriptional pulsing of a developmental gene. Curr. Biol. 16, 1018–1025 (2006).

    Article  CAS  Google Scholar 

  34. Muramoto, T. et al. Live imaging of nascent RNA dynamics reveals distinct types of transcriptional pulse regulation. Proc. Natl. Acad. Sci. USA 109, 7350–7355 (2012).

    Article  CAS  Google Scholar 

  35. Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).

    Article  Google Scholar 

  36. Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

    Article  CAS  Google Scholar 

  37. Vargas, D.Y. et al. Single-molecule imaging of transcriptionally coupled and uncoupled splicing. Cell 147, 1054–1065 (2011).

    Article  CAS  Google Scholar 

  38. Levsky, J.M., Shenoy, S.M., Pezo, R.C. & Singer, R.H. Single-cell gene expression profiling. Science 297, 836–840 (2002).

    Article  CAS  Google Scholar 

  39. Zenklusen, D., Larson, D.R. & Singer, R.H. Single-RNA counting reveals alternative modes of gene expression in yeast. Nat. Struct. Mol. Biol. 15, 1263–1271 (2008).

    Article  CAS  Google Scholar 

  40. Darzacq, X., Singer, R.H. & Shav-Tal, Y. Dynamics of transcription and mRNA export. Curr. Opin. Cell Biol. 17, 332–339 (2005).

    Article  CAS  Google Scholar 

  41. Mueller, F., Karpova, T.S., Mazza, D. & McNally, J.G. Monitoring dynamic binding of chromatin proteins in vivo by fluorescence recovery after photobleaching. Methods Mol. Biol. 833, 153–176 (2012).

    Article  CAS  Google Scholar 

  42. Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 14, 796–806 (2007).

    Article  CAS  Google Scholar 

  43. Janicki, S.M. et al. From silencing to gene expression; real-time analysis in single cells. Cell 116, 683–698 (2004).

    Article  CAS  Google Scholar 

  44. Darzacq, X. et al. Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. J. Cell Biol. 173, 207–218 (2006).

    Article  CAS  Google Scholar 

  45. Kumaran, R.I. & Spector, D.L. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J. Cell Biol. 180, 51–65 (2008).

    Article  CAS  Google Scholar 

  46. Dundr, M. et al. A kinetic framework for a mammalian RNA polymerase in vivo. Science 298, 1623–1626 (2002).

    Article  CAS  Google Scholar 

  47. O'Gorman, S., Fox, D.T. & Wahl, G.M. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251, 1351–1355 (1991).

    Article  CAS  Google Scholar 

  48. Craig, N.L. The mechanism of conservative site-specific recombination. Annu. Rev. Genet. 22, 77–105 (1988).

    Article  CAS  Google Scholar 

  49. Sauer, B. Site-specific recombination: developments and applications. Curr. Opin. Biotechnol. 5, 521–527 (1994).

    Article  CAS  Google Scholar 

  50. Roebroek, A.J., Wu, X. & Bram, R.J. Knockin approaches. Methods Mol. Biol. 209, 187–200 (2003).

    CAS  PubMed  Google Scholar 

  51. Isalan, M. Zinc-finger nucleases: how to play two good hands. Nat. Methods 9, 32–34 (2012).

    Article  CAS  Google Scholar 

  52. Broach, J.R. & Hicks, J.B. Replication and recombination functions associated with the yeast plasmid, 2 mu circle. Cell 21, 501–508 (1980).

    Article  CAS  Google Scholar 

  53. Femino, A.M., Fogarty, K., Lifshitz, L.M., Carrington, W. & Singer, R.H. Visualization of single molecules of mRNA in situ. Methods Enzymol. 361, 245–304 (2003).

    Article  CAS  Google Scholar 

  54. Wu, B., Chao, J.A. & Singer, R.H. Fluorescence fluctuation spectroscopy enables quantitative imaging of single mRNAs in living cells. Biophys. J. 102, 2936–2944 (2012).

    Article  CAS  Google Scholar 

  55. Pestell, R.G. et al. The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr. Rev. 20, 501–534 (1999).

    CAS  PubMed  Google Scholar 

  56. Klein, E.A. & Assoian, R.K. Transcriptional regulation of the cyclin D1 gene at a glance. J. Cell Sci. 121, 3853–3857 (2008).

    Article  CAS  Google Scholar 

  57. Polager, S. & Ginsberg, D. E2F mediates sustained G2 arrest and down-regulation of Stathmin and AIM-1 expression in response to genotoxic stress. J. Biol. Chem. 278, 1443–1449 (2003).

    Article  CAS  Google Scholar 

  58. Sporbert, A., Gahl, A., Ankerhold, R., Leonhardt, H. & Cardoso, M.C. DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol. Cell 10, 1355–1365 (2002).

    Article  CAS  Google Scholar 

  59. Liao, H., Winkfein, R.J., Mack, G., Rattner, J.B. & Yen, T.J. CENP-F is a protein of the nuclear matrix that assembles onto kinetochores at late G2 and is rapidly degraded after mitosis. J. Cell Biol. 130, 507–518 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the European Research Council (ERC), the Israel Cancer Research Fund (ICRF), and the Union for International Cancer Control (UICC) to Y.S.-T., and an Israel Science Foundation (ISF) Bikura grant to Y.G. and Y.S.-T.

Author information

Authors and Affiliations

Authors

Contributions

S.Y., L.R., Y.G. and Y.S.-T. wrote the paper.

Corresponding author

Correspondence to Yaron Shav-Tal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Sequence Archive

Full sequence for pSL24XMS2 plasmid (TXT 5 kb)

Supplementary Video 1

Fluctuations in transcriptional activity observed in a living cell. A time-lapse movie of a cell expressing the MS2-GFP protein showing the fluctuations in activity of the transcribing allele over a period of 196 minutes (imaged every 4 minutes). (AVI 82 kb)

Supplementary Video 2

Recovery of mRNA signal in a FRAP experiment. A FRAP movie of a cell expressing the MS2-GFP protein showing the recovery in fluorescence of the transcribing allele after photobleaching (imaged every 6 minutes after photobleaching). (AVI 181 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yunger, S., Rosenfeld, L., Garini, Y. et al. Quantifying the transcriptional output of single alleles in single living mammalian cells. Nat Protoc 8, 393–408 (2013). https://doi.org/10.1038/nprot.2013.008

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.008

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing