Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Stochastic profiling of transcriptional regulatory heterogeneities in tissues, tumors and cultured cells

Abstract

Single-cell variations in gene and protein expression are important during development and disease. Such cell-to-cell heterogeneities can be directly inspected one cell at a time, but global methods are usually not sensitive enough to work with the starting material of a single cell. Here we provide a detailed protocol for stochastic profiling, a method that infers single-cell regulatory heterogeneities by repeatedly sampling small collections of cells selected at random. Repeated stochastic sampling is performed by laser-capture microdissection or limiting dilution, followed by careful exponential cDNA amplification, hybridization to microarrays and statistical analysis. Stochastic profiling surveys the transcriptome for programs that are heterogeneously regulated among cellular subpopulations in their native tissue context. The protocol is readily optimized for specific biological applications and takes about 1 week to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Theoretical simulations of stochastic profiling for various expression dichotomies defined by different parameter sets.
Figure 2: Rapid nuclear fast red staining of HT-29 colon adenocarcinoma cells for laser-capture microdissection.
Figure 3: Workflow for small-sample cDNA amplification.
Figure 4: Representative optimization of AL1 primer amount and poly(A) PCR cycle number for small-sample cDNA amplification implemented with microdissected melanoma cells.
Figure 5: Reamplification and labeling of ten-cell samples.
Figure 6: Statistical and bioinformatic analysis of stochastic-profiling data.
Figure 7: Optimized small-sample cDNA amplifications in three distinct biological contexts.

Similar content being viewed by others

References

  1. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Altschuler, S.J. & Wu, L.F. Cellular heterogeneity: do differences make a difference? Cell 141, 559–563 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Snijder, B. & Pelkmans, L. Origins of regulated cell-to-cell variability. Nat. Rev. Mol. Cell Biol. 12, 119–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Losick, R. & Desplan, C. Stochasticity and cell fate. Science 320, 65–68 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Elowitz, M.B., Levine, A.J., Siggia, E.D. & Swain, P.S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Snijder, B. et al. Population context determines cell-to-cell variability in endocytosis and virus infection. Nature 461, 520–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Snijder, B. et al. Single-cell analysis of population context advances RNAi screening at multiple levels. Mol. Syst. Biol. 8, 579 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, X.S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Golding, I., Paulsson, J., Zawilski, S.M. & Cox, E.C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Ozbudak, E.M., Thattai, M., Kurtser, I., Grossman, A.D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Cai, L., Friedman, N. & Xie, X.S. Stochastic protein expression in individual cells at the single-molecule level. Nature 440, 358–362 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Huh, D. & Paulsson, J. Non-genetic heterogeneity from stochastic partitioning at cell division. Nat. Genet. 43, 95–100 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Fraser, H.B., Hirsh, A.E., Giaever, G., Kumm, J. & Eisen, M.B. Noise minimization in eukaryotic gene expression. PLoS Biol. 2, e137 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lestas, I., Vinnicombe, G. & Paulsson, J. Fundamental limits on the suppression of molecular fluctuations. Nature 467, 174–178 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spencer, S.L., Gaudet, S., Albeck, J.G., Burke, J.M. & Sorger, P.K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428–432 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang, H.H., Hemberg, M., Barahona, M., Ingber, D.E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544–547 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharma, S.V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gupta, P.B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Xie, X.S., Yu, J. & Yang, W.Y. Living cells as test tubes. Science 312, 228–230 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Pelkmans, L. Cell Biology. Using cell-to-cell variability—a new era in molecular biology. Science 336, 425–426 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Munsky, B., Neuert, G. & van Oudenaarden, A. Using gene expression noise to understand gene regulation. Science 336, 183–187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, D. & Bodovitz, S. Single cell analysis: the new frontier in 'omics'. Trends Biotechnol. 28, 281–290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hou, Y. et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148, 873–885 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Xu, X. et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148, 886–895 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Uhlen, M. et al. Towards a knowledge-based Human Protein Atlas. Nat. Biotechnol. 28, 1248–1250 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Bendall, S.C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shi, Q. et al. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc. Natl. Acad. Sci. USA 109, 419–424 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Cohen, A.A. et al. Dynamic proteomics of individual cancer cells in response to a drug. Science 322, 1511–1516 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Iscove, N.N. et al. Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat. Biotechnol. 20, 940–943 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Tietjen, I. et al. Single-cell transcriptional analysis of neuronal progenitors. Neuron 38, 161–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Chiang, M.K. & Melton, D.A. Single-cell transcript analysis of pancreas development. Dev. Cell 4, 383–393 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Sanchez-Freire, V., Ebert, A.D., Kalisky, T., Quake, S.R. & Wu, J.C. Microfluidic single-cell real-time PCR for comparative analysis of gene expression patterns. Nat. Protoc. 7, 829–838 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Citri, A., Pang, Z.P., Sudhof, T.C., Wernig, M. & Malenka, R.C. Comprehensive qPCR profiling of gene expression in single neuronal cells. Nat. Protoc. 7, 118–127 (2012).

    Article  CAS  Google Scholar 

  36. Tang, F. et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat. Protoc. 5, 516–535 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Esumi, S., Kaneko, R., Kawamura, Y. & Yagi, T. Split single-cell RT-PCR analysis of Purkinje cells. Nat. Protoc. 1, 2143–2151 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Kurimoto, K., Yabuta, Y., Ohinata, Y. & Saitou, M. Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat. Protoc. 2, 739–752 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Tang, F. et al. 220-plex microRNA expression profile of a single cell. Nat. Protoc. 1, 1154–1159 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Hartmann, C.H. & Klein, C.A. Gene expression profiling of single cells on large-scale oligonucleotide arrays. Nucleic Acids Res. 34, e143 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Dalerba, P. et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat. Biotechnol. 29, 1120–1127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klein, C.A. et al. Combined transcriptome and genome analysis of single micrometastatic cells. Nat. Biotechnol. 20, 387–392 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Klein, C.A., Zohlnhöfer, D., Petat-Dutter, K. & Wendler, N. Gene expression analysis of a single or few cells. Curr. Protoc. Hum. Genet. 11.8.1–11.8.18 (2005).

  44. Trimarchi, J.M., Stadler, M.B. & Cepko, C.L. Individual retinal progenitor cells display extensive heterogeneity of gene expression. PLoS ONE 3, e1588 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Trimarchi, J.M. et al. Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling. J. Comp. Neurol. 502, 1047–1065 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Kurimoto, K. et al. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice. Genes Dev. 22, 1617–1635 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tang, F. et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Ramos, C.A. et al. Evidence for diversity in transcriptional profiles of single hematopoietic stem cells. PLoS Genet. 2, e159 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bahar, R. et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441, 1011–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Taniguchi, K., Kajiyama, T. & Kambara, H. Quantitative analysis of gene expression in a single cell by qPCR. Nat. Methods 6, 503–506 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Reiter, M. et al. Quantification noise in single cell experiments. Nucleic Acids Res. 39, e124 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stahlberg, A., Hakansson, J., Xian, X., Semb, H. & Kubista, M. Properties of the reverse transcription reaction in mRNA quantification. Clin. Chem. 50, 509–515 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Zhao, B. et al. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 26, 54–68 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Geller, S.F., Lewis, G.P. & Fisher, S.K. FGFR1, signaling, and AP-1 expression after retinal detachment: reactive Muller and RPE cells. Invest. Ophthalmol. Vis. Sci. 42, 1363–1369 (2001).

    CAS  PubMed  Google Scholar 

  55. Shibata, Y., Nakamura, H., Kato, S. & Tomoike, H. Cellular detachment and deformation induce IL-8 gene expression in human bronchial epithelial cells. J. Immunol. 156, 772–777 (1996).

    CAS  PubMed  Google Scholar 

  56. Janes, K.A., Wang, C.C., Holmberg, K.J., Cabral, K. & Brugge, J.S. Identifying single-cell molecular programs by stochastic profiling. Nat. Methods 7, 311–317 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Raj, A. & van Oudenaarden, A. Single-molecule approaches to stochastic gene expression. Annu. Rev. Biophys. 38, 255–270 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Emmert-Buck, M.R. et al. Laser capture microdissection. Science 274, 998–1001 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Bengtsson, M., Stahlberg, A., Rorsman, P. & Kubista, M. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res. 15, 1388–1392 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Limpert, E., Stahel, W.A. & Abbt, M. Log-normal distributions across the sciences: keys and clues. Bioscience 51, 341–352 (2001).

    Article  Google Scholar 

  61. Kamme, F. et al. Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity. J. Neurosci. 23, 3607–3615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, L., Brugge, J.S. & Janes, K.A. Intersection of FOXO- and RUNX1-mediated gene expression programs in single breast epithelial cells during morphogenesis and tumor progression. Proc. Natl. Acad. Sci. USA 108, E803–812 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Janes, K.A. RUNX1 and its understudied role in breast cancer. Cell Cycle 10, 3461–3465 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, C.C., Jamal, L. & Janes, K.A. Normal morphogenesis of epithelial tissues and progression of epithelial tumors. Wiley Interdiscip. Rev. Syst. Biol. Med. 4, 51–78 (2012).

    Article  PubMed  CAS  Google Scholar 

  65. Bailey, T.L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  PubMed  Google Scholar 

  66. Gupta, S., Stamatoyannopoulos, J.A., Bailey, T.L. & Noble, W.S. Quantifying similarity between motifs. Genome Biol. 8, R24 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Banerji, S. et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486, 405–409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ellis, M.J. et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486, 353–360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stewart-Ornstein, J., Weissman, J.S. & El-Samad, H. Cellular noise regulons underlie fluctuations in Saccharomyces cerevisiae. Mol. Cell 45, 483–493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Raj, A., Rifkin, S.A., Andersen, E. & van Oudenaarden, A. Variability in gene expression underlies incomplete penetrance. Nature 463, 913–918 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Eldar, A. et al. Partial penetrance facilitates developmental evolution in bacteria. Nature 460, 510–514 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. O'Neill, R.A. et al. Isoelectric focusing technology quantifies protein signaling in 25 cells. Proc. Natl. Acad. Sci. USA 103, 16153–16158 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jain, A. et al. Probing cellular protein complexes using single-molecule pull-down. Nature 473, 484–488 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rapkiewicz, A. et al. The needle in the haystack: application of breast fine-needle aspirate samples to quantitative protein microarray technology. Cancer 111, 173–184 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Adli, M. & Bernstein, B.E. Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq. Nat. Protoc. 6, 1656–1668 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wu, A.R. et al. Automated microfluidic chromatin immunoprecipitation from 2,000 cells. Lab Chip 9, 1365–1370 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Espina, V. et al. Laser-capture microdissection. Nat. Protoc. 1, 586–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Burgemeister, R., Gangnus, R., Haar, B., Schutze, K. & Sauer, U. High quality RNA retrieved from samples obtained by using LMPC (laser microdissection and pressure catapulting) technology. Pathol. Res. Pract. 199, 431–436 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, H. et al. Histological staining methods preparatory to laser capture microdissection significantly affect the integrity of the cellular RNA. BMC Genomics 7, 97 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Brady, G. & Iscove, N.N. Construction of cDNA libraries from single cells. Methods Enzymol. 225, 611–623 (1993).

    Article  CAS  PubMed  Google Scholar 

  81. Miller-Jensen, K., Janes, K.A., Brugge, J.S. & Lauffenburger, D.A. Common effector processing mediates cell-specific responses to stimuli. Nature 448, 604–608 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Nagy, Z.B. et al. Real-time polymerase chain reaction-based exponential sample amplification for microarray gene expression profiling. Anal. Biochem. 337, 76–83 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Kurimoto, K. et al. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 34, e42 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Cox, W.G., Beaudet, M.P., Agnew, J.Y. & Ruth, J.L. Possible sources of dye-related signal correlation bias in two-color DNA microarray assays. Anal. Biochem. 331, 243–254 (2004).

    Article  PubMed  CAS  Google Scholar 

  85. Shi, L. et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat. Biotechnol. 24, 1151–1161 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Warren, L., Bryder, D., Weissman, I.L. & Quake, S.R. Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc. Natl. Acad. Sci. USA 103, 17807–17812 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. McKay, A.T. Distribution of the coefficient of variation and the extended 't' distribution. J. Roy. Stat. Soc. 95, 695–698 (1932).

    Article  Google Scholar 

  88. Sokal, R.R. & Rohlf, F.J. Biometry 4th edn. (W.H. Freeman and Company, 2012).

  89. Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures 4th edn. (Chapman & Hall, 2007).

  90. Kaelin, W.G. Jr. Molecular biology. Use and abuse of RNAi to study mammalian gene function. Science 337, 421–422 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Fend, F. et al. Immuno-LCM: laser capture microdissection of immunostained frozen sections for mRNA analysis. Am. J. Pathol. 154, 61–66 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, RESEARCH0034 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Bajikar for critically reading this manuscript, C. Slingluff for providing the primary melanoma sample, B. Kang for help with screening low-abundance genes and C. Borgman for help with frozen sectioning. This work was supported by the US National Institutes of Health Director's New Innovator Award Program (1-DP2-OD006464), the American Cancer Society (120668-RSG-11-047-01-DMC), the Pew Scholars Program in the Biomedical Sciences and the David and Lucile Packard Foundation.

Author information

Authors and Affiliations

Authors

Contributions

L.W. designed the current implementation of stochastic profiling and the optimization protocol for different cellular contexts. K.A.J. conceived of the method, supervised the development of the current implementation, coded all computer simulations and wrote the manuscript with contributions from L.W.

Corresponding author

Correspondence to Kevin A Janes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Optimized small-sample cDNA amplifications of SKW 6.4 suspension cells is retained upon frozen storage. 100-cell samples were serially diluted and amplified by small-sample poly(A) PCR either fresh (a) or after having been stored frozen at –80 °C (b). Amplification of the indicated genes was quantified by qPCR as described previously56, 81 (PDF 260 kb)

Supplementary Figure 2

Quantitative small-sample amplification of high-abundance to low-abundance transcripts from 3–100 microdissected cells in a primary melanoma sample. (a–p) 100-cell samples were serially diluted, amplified by small-sample poly(A) PCR, and quantified by qPCR as described previously56, 81. The qPCR cycle threshold for each gene is plotted as a function of starting cellular material and is shown as the median ± range of three replicate small-sample amplifications. Red lines show the log-linear fit of the 3–100-cell dilutions. Note that the one-cell amplifications (gray) often deviate from the log-linear fit. (PDF 299 kb)

Supplementary Figure 3

Quantitative small-sample amplification of high-abundance to low-abundance transcripts from 3–100 microdissected HT-29 cells grown in culture. (a–p) 100-cell samples were serially diluted, amplified by small-sample poly(A) PCR, and quantified by qPCR as described previously56, 81 The qPCR cycle threshold for each gene is plotted as a function of starting cellular material and is shown as the median ± range of three replicate small-sample amplifications. Red lines show the log-linear fit of the 3–100-cell dilutions. Note that the one-cell amplifications (gray) often deviate from the log-linear fit or are frequently not detectable (ND, shown in yellow). (PDF 300 kb)

Supplementary Figure 4

Quantitative small-sample amplification of high-abundance to low-abundance transcripts from 1–100 SKW 6.4 cells grown in suspension. (a–p) 100-cell samples were serially diluted, amplified by small-sample poly(A) PCR, and quantified by qPCR as described previously56, 81. The qPCR cycle threshold for each gene is plotted as a function of starting cellular material and is shown as the median ± range of three replicate small-sample amplifications. Red lines show the log-linear fit of the 3–100-cell dilutions. Note that the one-cell amplifications (gray) are reasonably accurate, consistent with previous work involving live single-cell suspensions32, 83. (PDF 301 kb)

Supplementary Method 1

Text file for the MATLAB program StochProfParameters.m (TXT 89 kb)

Supplementary Method 2

Text file for the MATLAB program StochProfMicroarrayFilt.Am (TXT 5 kb)

Supplementary Method 3

Text file for the MATLAB program StochProfAnalysis.m (TXT 5 kb)

Supplementary Data 1

Tab-delimited ASCII text file (Sampling_example.txt) of representative stochastic samplings. (TXT 5622 kb)

Supplementary Data 2

Tab-delimited ASCII text file (Controls_example.txt) of matched amplification controls. (TXT 5682 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Janes, K. Stochastic profiling of transcriptional regulatory heterogeneities in tissues, tumors and cultured cells. Nat Protoc 8, 282–301 (2013). https://doi.org/10.1038/nprot.2012.158

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.158

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing