Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Derivation of human embryonic stem cells using a post–inner cell mass intermediate

Abstract

Little is known about the true developmental origin of human embryonic stem cells (hESCs) or the events that initiate their generation. Recently, we have shown that hESCs originate from a post–inner cell mass (ICM) intermediate (PICMI), a unique transient epiblast-like structure that is different from both its ICM progenitor and its subsequent hESC fate. As a closer progenitor of hESCs than the ICM, the PICMI could be used to provide further insight into the human pluripotent state. Here we provide a detailed (7-d) protocol for the culture of the human preimplantation embryos in order to derive the PICMI. Subsequent identification and cryopreservation of the PICMI are described, in addition to hESC derivation. The initial hESC outgrowth is visible within 2–7 d after PICMI plating. By using the protocol provided, we observed PICMI formation in 21.3% of plated blastocysts with good-quality ICMs. Of the PICMIs used for hESC derivation, 80.6% showed hESC outgrowth after further culture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Grading human preimplantation embryos.
Figure 2: PICMI development in culture.
Figure 3: PICMI morphology in culture.
Figure 4: PICMI vitrification.

Similar content being viewed by others

References

  1. Brons, I.G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

    Article  CAS  Google Scholar 

  2. Tesar, P.J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007).

    Article  CAS  Google Scholar 

  3. Najm, F.J. et al. Isolation of epiblast stem cells from preimplantation mouse embryos. Cell Stem Cell 8, 318–325 (2011).

    Article  CAS  Google Scholar 

  4. Guo, G. et al. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136, 1063–1069 (2009).

    Article  CAS  Google Scholar 

  5. Hanna, J. et al. Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell 4, 513–524 (2009).

    Article  CAS  Google Scholar 

  6. O'Leary, T. et al. Tracking the progression of the human inner cell mass during embryonic stem cell derivation. Nat. Biotechnol. 30, 278–282 (2012).

    Article  CAS  Google Scholar 

  7. Adewumi, O. et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 25, 803–816 (2007).

    Article  CAS  Google Scholar 

  8. Blair, K., Wray, J. & Smith, A. The liberation of embryonic stem cells. PLoS Genet. 7, e1002019 (2011).

    Article  CAS  Google Scholar 

  9. Hanna, J.H., Saha, K. & Jaenisch, R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143, 508–525 (2010).

    Article  CAS  Google Scholar 

  10. Osafune, K. et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat. Biotechnol. 26, 313–315 (2008).

    Article  CAS  Google Scholar 

  11. Hanna, J. et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc. Natl Acad. Sci. USA 107, 9222–9227 (2010).

    Article  CAS  Google Scholar 

  12. Nichols, J. & Smith, A. The origin and identity of embryonic stem cells. Development 138, 3–8 (2011).

    Article  CAS  Google Scholar 

  13. Bao, S. et al. The germ cell determinant Blimp1 is not required for derivation of pluripotent stem cells. Cell Stem Cell 11, 110–117 (2012).

    Article  CAS  Google Scholar 

  14. Chu, L.F., Surani, M.A., Jaenisch, R. & Zwaka, T.P. Blimp1 expression predicts embryonic stem cell development in vitro. Curr. Biol. 21, 1759–1765 (2011).

    Article  CAS  Google Scholar 

  15. Zwaka, T.P. & Thomson, J.A. A germ cell origin of embryonic stem cells? Development 132, 227–233 (2005).

    Article  CAS  Google Scholar 

  16. Kuijk, E.W., Chuva de Sousa Lopes, S.M., Geijsen, N., Macklon, N. & Roelen, B.A. The different shades of mammalian pluripotent stem cells. Hum. Reprod. Update 17, 254–271 (2011).

    Article  CAS  Google Scholar 

  17. Yamagata, K., Ueda, J., Mizutani, E., Saitou, M. & Wakayama, T. Survival and death of epiblast cells during embryonic stem cell derivation revealed by long-term live-cell imaging with an Oct4 reporter system. Dev. Biol. 346, 90–101 (2010).

    Article  CAS  Google Scholar 

  18. Chen, H. et al. The derivation of two additional human embryonic stem cell lines from day 3 embryos with low morphological scores. Hum. Reprod. 20, 2201–2206 (2005).

    Article  Google Scholar 

  19. Genbacev, O. et al. Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders. Fertil. Steril. 83, 1517–1529 (2005).

    Article  Google Scholar 

  20. Lerou, P.H. et al. Human embryonic stem cell derivation from poor-quality embryos. Nat. Biotechnol. 26, 212–214 (2008).

    Article  CAS  Google Scholar 

  21. Lysdahl, H. et al. Derivation and characterization of four new human embryonic stem cell lines: the Danish experience. Reprod. Biomed. Online 12, 119–126 (2006).

    Article  Google Scholar 

  22. O'Leary, T. et al. The influence of early embryo traits on human embryonic stem cell derivation efficiency. Stem Cells Dev. 20, 785–793 (2011).

    Article  Google Scholar 

  23. Hasegawa, K., Pomeroy, J.E. & Pera, M.F. Current technology for the derivation of pluripotent stem cell lines from human embryos. Cell Stem Cell 6, 521–531 (2010).

    Article  CAS  Google Scholar 

  24. Solter, D. & Knowles, B.B. Immunosurgery of mouse blastocyst. Proc. Natl Acad. Sci. USA 72, 5099–5102 (1975).

    Article  CAS  Google Scholar 

  25. Chen, A.E. et al. Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell 4, 103–106 (2009).

    Article  CAS  Google Scholar 

  26. Findikli, N., Kahraman, S., Akcin, O., Sertyel, S. & Candan, Z. Establishment and characterization of new human embryonic stem cell lines. Reprod. Biomed. Online 10, 617–627 (2005).

    Article  Google Scholar 

  27. Heins, N. et al. Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells 22, 367–376 (2004).

    Article  Google Scholar 

  28. Tropel, P. et al. High-efficiency derivation of human embryonic stem cell lines following pre-implantation genetic diagnosis. In Vitro Cell Dev. Biol. Anim. 46, 376–385 (2010).

    Article  Google Scholar 

  29. Strom, S. et al. No relationship between embryo morphology and successful derivation of human embryonic stem cell lines. PLoS ONE 5, e15329 (2010).

    Article  Google Scholar 

  30. Fisch, J.D., Rodriguez, H., Ross, R., Overby, G. & Sher, G. The Graduated Embryo Score (GES) predicts blastocyst formation and pregnancy rate from cleavage-stage embryos. Hum. Reprod. 16, 1970–1975 (2001).

    Article  CAS  Google Scholar 

  31. Giorgetti, C. et al. Embryo score to predict implantation after in vitro fertilization: based on 957 single embryo transfers. Hum. Reprod. 10, 2427–2431 (1995).

    Article  CAS  Google Scholar 

  32. Holte, J. et al. Construction of an evidence-based integrated morphology cleavage embryo score for implantation potential of embryos scored and transferred on day 2 after oocyte retrieval. Hum. Reprod. 22, 548–557 (2007).

    Article  CAS  Google Scholar 

  33. Steer, C.V., Mills, C.L., Tan, S.L., Campbell, S. & Edwards, R.G. The cumulative embryo score: a predictive embryo scoring technique to select the optimal number of embryos to transfer in an in vitro fertilization and embryo transfer programme. Hum. Reprod. 7, 117–119 (1992).

    Article  CAS  Google Scholar 

  34. Niakan, K.K., Han, J., Pedersen, R.A., Simon, C. & Pera, R.A. Human pre-implantation embryo development. Development 139, 829–841 (2012).

    Article  CAS  Google Scholar 

  35. Ottosen, L.D., Kesmodel, U., Hindkjaer, J. & Ingerslev, H.J. Pregnancy prediction models and eSET criteria for IVF patients—do we need more information? J. Assist. Reprod. Genet. 24, 29–36 (2007).

    Article  Google Scholar 

  36. van Loendersloot, L.L. et al. Predictive factors in in vitro fertilization (IVF): a systematic review and meta-analysis. Hum. Reprod. Update 16, 577–589 (2010).

    Article  CAS  Google Scholar 

  37. Broekmans, F.J., Knauff, E.A., te Velde, E.R., Macklon, N.S. & Fauser, B.C. Female reproductive ageing: current knowledge and future trends. Trends Endocrinol. Metab. 18, 58–65 (2007).

    Article  CAS  Google Scholar 

  38. O'Leary, T. et al. The influence of patient and cohort parameters on the incidence and developmental potential of embryos with poor quality traits for use in human embryonic stem cell derivation. Hum. Reprod. 27, 1581–1589 (2012).

    Article  CAS  Google Scholar 

  39. Banerjee, P. et al. Deep phenotyping to predict live birth outcomes in in vitro fertilization. Proc. Natl Acad. Sci. USA 107, 13570–13575 (2010).

    Article  CAS  Google Scholar 

  40. Cai, Q.F., Wan, F., Huang, R. & Zhang, H.W. Factors predicting the cumulative outcome of IVF/ICSI treatment: a multivariable analysis of 2450 patients. Hum. Reprod. 26, 2532–2540 (2011).

    Article  CAS  Google Scholar 

  41. Jun, S.H. et al. Defining human embryo phenotypes by cohort-specific prognostic factors. PLoS One 3, e2562 (2008).

    Article  Google Scholar 

  42. Inamdar, M.S., Venu, P., Srinivas, M.S., Rao, K. & VijayRaghavan, K. Derivation and characterization of two sibling human embryonic stem cell lines from discarded grade III embryos. Stem Cells Dev. 18, 423–433 (2009).

    Article  CAS  Google Scholar 

  43. Venu, P., Chakraborty, S. & Inamdar, M.S. Analysis of long-term culture properties and pluripotent character of two sibling human embryonic stem cell lines derived from discarded embryos In Vitro Cell Dev. Biol. Anim. 46, 200–205 (2010).

    Article  Google Scholar 

  44. Cheng, E.H. et al. Blastocoel volume is related to successful establishment of human embryonic stem cell lines. Reprod. Biomed. Online 17, 436–444 (2008).

    Article  CAS  Google Scholar 

  45. Cowan, C.A. et al. Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med. 350, 1353–1356 (2004).

    Article  CAS  Google Scholar 

  46. Stephenson, E.L., Braude, P.R. & Mason, C. International community consensus standard for reporting derivation of human embryonic stem cell lines. Regen. Med. 2, 349–362 (2007).

    Article  Google Scholar 

  47. Hovatta, O. et al. A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum. Reprod. 18, 1404–1409 (2003).

    Article  Google Scholar 

  48. Inzunza, J. et al. Derivation of human embryonic stem cell lines in serum replacement medium using postnatal human fibroblasts as feeder cells. Stem Cells 23, 544–549 (2005).

    Article  CAS  Google Scholar 

  49. Lee, J.B. et al. Establishment and maintenance of human embryonic stem cell lines on human feeder cells derived from uterine endometrium under serum-free condition. Biol. Reprod. 72, 42–49 (2005).

    Article  CAS  Google Scholar 

  50. Richards, M., Fong, C.Y., Chan, W.K., Wong, P.C. & Bongso, A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 20, 933–936 (2002).

    Article  CAS  Google Scholar 

  51. Crook, J.M. et al. The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell 1, 490–494 (2007).

    Article  CAS  Google Scholar 

  52. Fu, X. et al. Establishment of clinically compliant human embryonic stem cells in an autologous feeder-free system. Tissue Eng. Part C Methods 17, 927–937 (2011).

    Article  Google Scholar 

  53. Fragouli, E. & Wells, D. Aneuploidy in the human blastocyst. Cytogenet. Genome Res. 133, 149–159 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Flemish Foundation for Scientific Research (FWO-Vlaanderen (grant no. FWO-3G062910) and by the Concerted Research Actions funding from Bijzonder Onderzoeksfonds to P.D.S. (grant no. BOF GOA 01G01112). S.M.C.S.L. was supported by the Netherlands organization of Scientific Research (NWO) (no. ASPASIA 015.007.037) and the Interuniversity Attraction Poles (PAI) (no. P6/20). P.D.S. is the holder of a fundamental clinical research mandate by the Flemish Foundation for Scientific Research (FWO-Vlaanderen).

Author information

Authors and Affiliations

Authors

Contributions

T.O., B.H., P.D.S. and S.M.C.d.S.L. designed the study; T.O., S.L., M.V.d.J. and G.D. performed the experiments; and T.O., B.H., S.L. and S.M.C.d.S.L. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Thomas O'Leary.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Leary, T., Heindryckx, B., Lierman, S. et al. Derivation of human embryonic stem cells using a post–inner cell mass intermediate. Nat Protoc 8, 254–264 (2013). https://doi.org/10.1038/nprot.2012.157

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.157

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing