Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Ex vivo perfusion of mid-to-late-gestation mouse placenta for maternal-fetal interaction studies during pregnancy

Abstract

Ex vivo perfusion systems offer a reliable, reproducible method for studying acute physiological responses of an organ to various environmental manipulations. Unlike in vitro culture systems, the cellular organization, compartmentalization and three-dimensional structure of ex vivo–perfused organs are maintained. These particular parameters are crucial for the normal physiological function of the placenta, which supports fetal growth through transplacental exchange, nutritional synthesis and metabolism, growth factor promotion and regulation of both maternally and fetally derived molecules. The perfusion system described here, which can be completed in 4–5 h, allows for integrated, physiological studies of de novo synthesis and metabolism and transport of materials across the live mouse placenta, not only throughout a normal gestation period but also following a variety of individual or combined genetic and environmental perturbations compromising placental function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the ex vivo perfusion system.
Figure 2: Effect of perfusion rate on placental morphology.
Figure 3: Extraction and isolation of an E18 mouse placenta.
Figure 4: Preparation and perfusion of mouse placental tissue.

Similar content being viewed by others

References

  1. Stulc, J., Stulcová, B. & Svihovec, J. Transport of calcium across the dually perfused placenta of the rat. J. Physiol. 420, 295–311 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nowak-Wegzryan, A. Materno-fetal passage of nutritive and inhalant allergens across placentas of term and preterm deliveries perfused in vitro. Pediatrics 112, 460 (2003).

    Article  Google Scholar 

  3. Cygalova, L.H., Hofman, J., Ceckova, M. & Staud, F. Transplacental pharmacokinetics of glyburide, rhodamine 123, and BODIPY FL prazosin: effect of drug efflux transporters and lipid solubility. J. Pharmacol. Exp. Ther. 331, 1118–1125 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Schneider, H., Panigel, M. & Dancis, J. Transfer across the perfused human placenta of antipyrine, sodium and leucine. Am. J. Obstet. Gynecol. 114, 822–828 (1972).

    Article  CAS  PubMed  Google Scholar 

  5. Myren, M., Mose, T., Mathiesen, L. & Knudsen, L.E. The human placenta—an alternative for studying foetal exposure. Toxicol. In Vitro 21, 1332–1340 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Bond, H. et al. Artificial perfusion of the fetal circulation of the in situ mouse placenta: methodology and validation. Placenta 27, S69–S75 (2006).

    Article  PubMed  Google Scholar 

  7. Hauguel, S., Challier, J.C., Cedard, L. & Olive, G. Metabolism of the human placenta perfused in vitro: glucose transfer and utilization, O2 consumption, lactate and ammonia production. Pediatr. Res. 17, 729–732 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Ala-Kokko, T.I., Myllynen, P. & Vähäkangas, K. Ex vivo perfusion of the human placental cotyledon: implications for anesthetic pharmacology. Int. J. Obstet. Anesth. 9, 26–38 (2000).

    Article  Google Scholar 

  9. Bonnin, A. et al. A transient placental source of serotonin for the fetal forebrain. Nature 472, 347–350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Loughhead, A.M. et al. Placental passage of tricyclic antidepressants. Biol. Psychiatry 59, 287–290 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Wheeler, C.P. & Yudilevich, D.L. Transport and metabolism of adenosine in the perfused guinea-pig placenta. J. Physiol. 405, 511–526 (1988).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Polliotti, B.M. et al. Long-term dual perfusion of isolated human placental lobules with improved oxygenation for infectious diseases research. Placenta 17, 57–68 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Panigel, M. Radioangiographic study of circulation in the villi and intervillous space of isolated human placental cotyledon kept viable by perfusion. J. Physiol. (Paris) 59, 277 (1967).

    CAS  Google Scholar 

  14. Miller, R.K. Human placenta in vitro: characterization during 12 h of dual perfusion. Contrib. Gynecol. Obstet. 13, 77–84 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Sweiry, J.H. & Yudilevich, D.L. Characterization of folate uptake in guinea pig placenta. Am. J. Physiol. 254, C735–C743 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Hutson, J.R., Garcia-Bournissen, F., Davis, A. & Koren, G. The human placental perfusion model: a systematic review and development of a model to predict in vivo transfer of therapeutic drugs. Clin. Pharmacol. Ther. 90, 67–76 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Suzue, T. Physiological activities of late-gestation rat fetuses in vitro. Neurosci. Res. 14, 145–157 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Staud, F. et al. Corticosterone transfer and metabolism in the dually perfused rat placenta: effect of 11β-hydroxysteroid dehydrogenase type 2. Placenta 27, 171–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Schröder, H. & Leichtweiss, H.P. Perfusion rates and the transfer of water across isolated guinea pig placenta. Am. J. Physiol. 232, H666–H670 (1977).

    PubMed  Google Scholar 

  20. Pienimäki, P. et al. Pharmacokinetics of oxcarbazepine and carbamazepine in human placenta. Epilepsia 38, 309–316 (1997).

    Article  PubMed  Google Scholar 

  21. Penfold, P., Drury, L., Simmonds, R. & Hytten, F.E. Studies of a single placental cotyledon in vitro: I. The preparation and its viability. Placenta 2, 149–154 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Pollex, E.K., Feig, D.S., Lubetsky, A., Yip, P.M. & Koren, G. Insulin glargine safety in pregnancy: a transplacental transfer study. Diabetes Care 33, 29–33 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Halkoaho, A. et al. Ethical aspects of human placental perfusion: interview of the mothers donating placenta. Placenta 31, 686–690 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Staud, F. et al. Expression and transport activity of breast cancer resistance protein (Bcrp/Abcg2) in dually perfused rat placenta and HRP-1 cell line. J. Pharmacol. Exp. Ther. 319, 53–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Vähäkangas, K. & Myllynen, P. Experimental methods to study human transplacental exposure to genotoxic agents. Mutat. Res. 608, 129–135 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. Heikkine, T., Ekblad, U. & Laine, K. Transplacental transfer of citalopram, fluoxetine and their primary demethylated metabolites in isolated perfused human placenta. BJOG 109, 1003–1008 (2002).

    Article  PubMed  Google Scholar 

  27. Di Santo, S. Trophoblast viability in perfused term placental tissue and explant cultures limited to 7–24 h. Placenta 24, 882–894 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Suzue, T. Perfusion method and their physiological activities. Neurosci. Res. 21, 173–176 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Bajoria, R. & Contractor, S.F. Effect of surface charge of small unilamellar liposomes on uptake and transfer of carboxyfluorescein across the perfused human term placenta. Pediatr. Res. 42, 520–527 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Tohyama, K., Kusuhara, H. & Sugiyama, Y. Involvement of multispecific organic anion transporter, Oatp14 (Slc21a14), in the transport of thyroxine across the blood-brain barrier. Endocrinology 145, 4384–4391 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Bonnin, A. & Levitt, P. Placental source for 5-HT that tunes fetal brain development. Neuropsychopharmacology 37, 299–300 (2012).

    Article  PubMed  Google Scholar 

  32. Bonnin, A. & Levitt, P. Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience 197, 1–7 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Okada, Y. et al. Complementation of placental defects and embryonic lethality by trophoblast-specific lentiviral gene transfer. Nat. Biotechnol. 25, 233–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Wenzel, P.L. & Leone, G. Expression of Cre recombinase in early diploid trophoblast cells of the mouse placenta. Genesis 134, 129–134 (2007).

    Article  CAS  Google Scholar 

  35. Renaud, S.J., Karim Rumi, M.A. & Soares, M.J. Review: Genetic manipulation of the rodent placenta. Placenta 32 (suppl. 2), S130–S135 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Morioka, Y., Isotani, A., Oshima, R.G., Okabe, M. & Ikawa, M. Placenta-specific gene activation and inactivation using integrase-defective lentiviral vectors with the Cre/loxP system. Genesis 47, 793–798 (2009).

    CAS  PubMed  Google Scholar 

  37. Zenclussen, A.C., Olivieri, D.N., Dustin, M.L. & Tadokoro, C.E. In vivo multiphoton microscopy technique to reveal the physiology of the mouse placenta. Am. J. Reprod. Immunol. 1600, 1–8 (2012).

    Google Scholar 

  38. Sitras, V., Fenton, C., Paulssen, R., Vårtun, Å. & Acharya, G. Differences in gene expression between first and third trimester human placenta: a microarray study. PLoS ONE 7, e33294 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Watson, E.D. & Cross, J.C. Development of structures and transport functions in the mouse placenta. Physiology 20, 180–193 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Mikheev, A.M. et al. Profiling gene expression in human placentae of different gestational ages: an OPRU network and UW SCOR study. Reprod. Sci. 15, 866–877 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Battaglia, F.C. & Regnault, T.R. Placental transport and metabolism of amino acids. Placenta 22, 145–161 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Pacifici, G.M. Placental transfer of drugs administered to the mother. Clin. Pharmacokinet. 28, 235–269 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Bell, A.W. Placental transport of nutrients and its implications for fetal growth. J. Reprod. Fertil. Suppl. 54, 401–410 (1999).

    CAS  PubMed  Google Scholar 

  44. Apgar, V. & Papper, M.E. Transmission of drugs across the placenta. Anesth. Analg. 31, 309–320 (1951).

    Google Scholar 

  45. Hay, W.W. Placental transport of nutrients to the fetus. Horm. Res. 42, 215–222 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Battaglia, F.C. Placental transport: a function of permeability and perfusion. Am. J. Clin. Nutr. 85, 591S–597S (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Coan, P.M. et al. Adaptations in placental nutrient transfer capacity to meet fetal growth demands depend on placental size in mice. J. Physiol. 586, 4567–4576 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Coan, P.M. et al. Adaptations in placental phenotype support fetal growth during undernutrition of pregnant mice. J. Physiol. 588, 527–538 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Devaskar, S.U. Expression of genes involved in placental glucose uptake and transport in the nonobese diabetic mouse pregnancy. Am. J. Obstet. Gynecol. 171, 1316–1323 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Boyd, J.D. & Hamilton, W.J. Development and structure of the human placenta from the end of the 3rd month of gestation. J. Obstet. Gynaecol. Br. Commonw. 74, 161–226 (1967).

    Article  CAS  PubMed  Google Scholar 

  51. Hamilton, W.J. Trophoblast in human uterno-placental arteries. Nature 212, 906–908 (1966).

    Article  CAS  PubMed  Google Scholar 

  52. Kaufmann, P. & Stegner, H.E. Functional differentiation of the human placental syncytiotrophoblast. Z. Zellforsch. Mikrosk. Anat. 135, 361–382 (1972).

    Article  CAS  PubMed  Google Scholar 

  53. Boyd, J.D. Observations on the vacuolar structure of the human syncytiotrophoblast. Z. Zellforsch. Mikrosk. Anat. 88, 57–79 (1968).

    Article  CAS  PubMed  Google Scholar 

  54. Coan, P.M., Ferguson-Smith, A.C. & Burton, G.J. Developmental dynamics of the definitive mouse placenta assessed by stereology. Biol. Reprod. 70, 1806–1813 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Brown, A.S. et al. Prenatal rubella, premorbid abnormalities, and adult schizophrenia. Biol. Psychiatry 49, 473–486 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Enayati, M. et al. Maternal infection during late pregnancy increases anxiety- and depression-like behaviors with increasing age in male offspring. Brain Res. Bull. 87, 295–302 (2012).

    Article  PubMed  Google Scholar 

  57. Lau, C. Fetal programming of adult disease: implications for prenatal care. Obstet. Gynecol. 117, 978–985 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Nathanielsz, P.W. Fetal programming: from gene to functional systems—an overview. J. Physiol. 547, 3–4 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  59. Stolp, H., Neuhaus, A., Sundramoorthi, R. & Molnár, Z. The long and the short of it: gene and environment interactions during early cortical development and consequences for long-term neurological disease. Front. Psychiatry 3, 50 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mueller, B.R. & Bale, T.L. Sex-specific programming of offspring emotionality after stress early in pregnancy. J. Neurosci. 28, 9055–9065 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Myatt, L. Placental adaptive responses and fetal programming. J. Physiol. 572, 25–30 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jansson, T. & Powell, T.L. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin. Sci. 113, 1–13 (2007).

    Article  CAS  Google Scholar 

  63. Ponder, K.L. et al. Maternal depression and anxiety are associated with altered gene expression in the human placenta without modification by antidepressant use: implications for fetal programming. Dev. Psychol. 53, 711–723 (2011).

    Article  CAS  Google Scholar 

  64. Gilligan, J., Tong, M., Longato, L., de la Monte, S.M. & Gundogan, F. Precision-cut slice culture method for rat placenta. Placenta 33, 67–72 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Rennie, M.Y., Whiteley, K.J., Kulandavelu, S., Adamson, S.L. & Sled, J.G. 3D visualisation and quantification by microcomputed tomography of late gestational changes in the arterial and venous feto-placental vasculature of the mouse. Placenta 28, 833–840 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Cox, B. et al. Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology. Mol. Syst. Biol. 5, 279 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Georgiades, P., Ferguson-Smith, A.C. & Burton, G.J. Comparative developmental anatomy of the murine and human definitive placentae. Placenta 23, 3–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Buja, L.M. & Entman, M.L. Modes of myocardial cell injury and cell death in ischemic heart disease. Circulation 98, 1355–1357 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Jia, Z., Chen, Q. & Qin, H. Ischemia-induced apoptosis of intestinal epithelial cells correlates with altered integrin distribution and disassembly of f-actin triggered by calcium overload. J. Biomed. Biotechnol. 2012, 1–10 (2012).

    Article  CAS  Google Scholar 

  71. Killinger, W.A.J., Dorofi, D.B., Keagy, B.A. & Johnson, G.J. Endothelial cell preservation using organ storage solutions. Transplantation 53, 979–982 (1992).

    Article  PubMed  Google Scholar 

  72. Hilgers, R.H.P. et al. Uterine artery structural and functional changes during pregnancy in tissue kallikrein-deficient mice. Arterioscler. Thromb. Vasc. Biol. 23, 1826–1832 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Mu, J. & Adamson, S.L. Developmental changes in hemodynamics of uterine artery, utero- and umbilicoplacental, and vitelline circulations in mouse throughout gestation. Am. J. Physiol. Heart Circ. Physiol. 5, 1421–1428 (2006).

    Article  CAS  Google Scholar 

  74. Osol, G. & Mandala, M. Maternal uterine vascular remodeling during pregnancy. Physiology 24, 58–71 (2009).

    Article  PubMed  Google Scholar 

  75. MacLennan, M.J. & Keller, B.B. Umbilical arterial blood flow in the mouse embryo during development and following acutely increased heart rate. Ultrasound Med. Biol. 25, 361–370 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Kay, H.H., Zhu, S. & Tsoi, S. Hypoxia and lactate production in trophoblast cells. Placenta 28, 854–860 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Dunwoodie, S.L. The role of hypoxia in development of the mammalian embryo. Dev. Cell 17, 755–773 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Tissot van Patot, M.C. et al. Human placental metabolic adaptation to chronic hypoxia, high altitude: hypoxic preconditioning. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, 166–172 (2010).

    Article  CAS  Google Scholar 

  79. Hernandez, L.D. et al. Caspases and cell death. In Encyclopedia of Life Sciences. (John Wiley & Sons, 2001).

  80. Lamkanfi, M., Festjens, N., Declercq, W., Vanden Berghe, T. & Vandenabeele, P. Caspases in cell survival, proliferation and differentiation. Cell Death Differ. 14, 44–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Edison, N. et al. The IAP-antagonist ARTS initiates caspase activation upstream of cytochrome C and SMAC/Diablo. Cell Death Differ. 19, 356–368 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Schwartz, S.M. Cell death and the caspase cascade. Circulation 97, 227–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Mu, J. et al. Apoptosis and related proteins in placenta of intrauterine fetal death in prostaglandin F receptor-deficient mice. Biol. Reprod. 68, 1968–1974 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Child Health and Human Development (NICHD) (grant 5R21HD065287 to A.B.) and a NARSAD (National Alliance for Research on Schizophrenia and Depression; now the Brain and Behavior Research Foundation) Young Investigator award (to A.B.). We thank P. Levitt for his support during the initial development of this protocol. We acknowledge J. Burford and J. Peti-Peterdi for their valuable contributions in two-photon live imaging.

Author information

Authors and Affiliations

Authors

Contributions

N.G. conducted the experiments. N.G. and A.B. conceived the protocol, interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Alexandre Bonnin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

Real-time imaging of flow through the placental vasculature. E18 mouse placenta perfused through the umbilical artery with 70,000 mw Texas Rhodamine Red labeled dextran at 5 μl min-1. The perfusion was imaged in real-time with a Leica SP5 MP 2-photon microscope, demonstrating flow within the placental vasculature during perfusion. All animal experiments have been conducted in accordance with the National Institutes of Health Animal Use Guidelines and approved by the Institutional Animal Care and Use Committee at The University of Southern California. (MOV 2316 kb)

Supplementary Video 2

Demonstration of embolism caused by insufficient degassing of perfusate solutions. E18 mouse placenta perfused through the umbilical artery at 5 μl min-1 with PBS + 0.01% FCF that has not been subjected to degassing or pre-warming. All animal experiments have been conducted in accordance with the National Institutes of Health Animal Use Guidelines and approved by the Institutional Animal Care and Use Committee at The University of Southern California. (MOV 7559 kb)

Supplementary Video 3

Splitting of the umbilical cord. A demonstration of the technique used when separating the umbilical artery and vein of a mouse placenta of any age. All animal experiments have been conducted in accordance with the National Institutes of Health Animal Use Guidelines and approved by the Institutional Animal Care and Use Committee at The University of Southern California. (MOV 11752 kb)

Supplementary Video 4

Cannulation of the uterine artery. A demonstration of the technique used to cannulate the uterine artery of an E14 mouse placenta. All animal experiments have been conducted in accordance with the National Institutes of Health Animal Use Guidelines and approved by the Institutional Animal Care and Use Committee at The University of Southern California. (MOV 9708 kb)

Supplementary Video 5

Cannulation of the umbilical artery. A demonstration of the technique used to cannulate the umbilical artery of an E14 mouse placenta. All animal experiments have been conducted in accordance with the National Institutes of Health Animal Use Guidelines and approved by the Institutional Animal Care and Use Committee at The University of Southern California. (MOV 7179 kb)

Supplementary Figure 1

Visualization of maternal and fetal blood spaces in ex vivo perfused placenta. E18 mouse placenta perfused through the uterine artery with 500,000 mw FITC labeled dextran (diluted 1:100 with PBS) at 18 μl min-1, and through the umbilical artery with 70,000 mw Texas Rhodamine Red labeled dextran (diluted 1:50 with PBS) at 5 μl min-1. The perfusion was imaged in real-time with a Leica SP5 MP 2-photon microscope, demonstrating visualization of fetal villi (FV - red) surrounding and intermingling with maternal blood space (MBS - green). Scale bar = 150 μm. All animal experiments have been conducted in accordance with the National Institutes of Health Animal Use Guidelines and approved by the Institutional Animal Care and Use Committee at The University of Southern California. (PDF 506 kb)

Supplementary Figure 2

Application of surgical thread to prevent leaking from the umbilical artery. The surgical thread is isolated and wrapped around the artery (a, b). The suture is wrapped over itself (c), and then tucked back inside of the loop (d) to create a simple knot. The knot is tightened (e) downstream of the vascular leak, restoring flow to the organ (f). All animal experiments have been conducted in accordance with the National Institutes of Health Animal Use Guidelines and approved by the Institutional Animal Care and Use Committee at The University of Southern California. (PDF 419 kb)

Supplementary Figure 3

Placental tissue viability during perfusion. (a) Measurements of fetal volume loss of samples collected from the umbilical vein of E16 mouse placentas (n=3) at 10 min intervals, using an input of 6 μl min-1 as the reference flow rate. A complete volume loss of 6 μl min-1 indicates fully collapsed vasculature. (b) Quantification of LDH activity in the fetal eluate of PBS perfused E16 mouse placentas (n=3), indicating that low and stable LDH activity is present throughout the typical 90 min perfusion. (c-k) Activated caspase-3 staining in the decidua of E14 mouse placentas stained with activated Caspase-3 (green) and DAPI (blue). Fresh, unperfused tissue (c-e) shows little or no activated caspase-3 staining, indicating a lack of cell death. A placenta perfused for 120 mins with fresh PBS (f-h) similarly shows little or no activated caspase-3 positive cells, where as an unperfused placenta (i-k) shows significant activated caspase-3 staining (), indicating the onset of cellular apoptosis. Scale bar = 50 μm. (l) Quantification of co-localized caspase-3 and DAPI positive cells in a 0.6 mm2 area of interest for PBS perfused and unperfused E14 mouse placentas (n=3 each) at several time points. All animal experiments have been conducted in accordance with the National Institutes of Health Animal Use Guidelines and approved by the Institutional Animal Care and Use Committee at The University of Southern California. Error bars indicate standard deviation. (PDF 472 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goeden, N., Bonnin, A. Ex vivo perfusion of mid-to-late-gestation mouse placenta for maternal-fetal interaction studies during pregnancy. Nat Protoc 8, 66–74 (2013). https://doi.org/10.1038/nprot.2012.144

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.144

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing