Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy

This article has been updated

Abstract

Surface-enhanced Raman scattering (SERS) is a powerful fingerprint vibrational spectroscopy with a single-molecule detection limit, but its applications are generally restricted to 'free-electron–like' metal substrates such as Au, Ag and Cu nanostructures. We have invented a shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) technique, using Au-core silica-shell nanoparticles (Au@SiO2 NPs), which makes SERS universally applicable to surfaces with any composition and any morphology. This protocol describes how to prepare shell-isolated nanoparticles (SHINs) with different well-controlled core sizes (55 and 120 nm), shapes (nanospheres, nanorods and nanocubes) and shell thicknesses (1–20 nm). It then describes how to apply SHINs to Pt and Au single-crystal surfaces with different facets in an electrochemical environment, on Si wafer surfaces adsorbed with hydrogen, on ZnO nanorods, and on living bacteria and fruit. With this method, SHINs can be prepared for use in 3 h, and each subsequent procedure for SHINERS measurement requires 1–2 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: HR-TEM images of Au@SiO2 NPs.
Figure 3: Images of 120-nm Au@SiO2 SHINs.
Figure 4: HR-TEM images of nanorod and nanocube SHINs.
Figure 5: Correlation of the SHINERS intensity and the shell thickness.
Figure 6: Pinhole test for SHINs.
Figure 7: Stability comparison of SHINs and bare Au NPs.
Figure 8: Schematic illustration of our homemade spectroelectrochemical cell.
Figure 9: 3D-FDTD modeling of four SHINs on an Au substrate.

Similar content being viewed by others

Change history

  • 02 January 2013

     In the version of this article initially published online, the Acknowledgments statement was incomplete. It should also have included an acknowledgment of funding from the National Natural Science Foundation of China (NSFC; nos. 21033007, 21021002 and 20825313). The error has been corrected in all versions of the article.

References

  1. Fleischmann, M., Hendra, P.J. & McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974).

    Article  CAS  Google Scholar 

  2. Albrecht, M.G. & Creighton, J.A. Anomalously intense Raman-spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977).

    Article  CAS  Google Scholar 

  3. Jeanmaire, D.L. & Vanduyne, R.P. Surface Raman spectroelectrochemistry .1. heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J. Electroanal. Chem. 84, 1–20 (1977).

    Article  CAS  Google Scholar 

  4. Nie, S.M. & Emery, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  CAS  Google Scholar 

  5. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  CAS  Google Scholar 

  6. Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985).

    Article  CAS  Google Scholar 

  7. Kneipp, K., Moskovits, M. & Kneipp, H. (eds.) Topics in Applied Physics vol. 103; Surface-Enhanced Raman Scattering: Physics and Applications. (Springer, 2006).

  8. Camden, J.P., Dieringer, J.A., Zhao, J. & Van Duyne, R.P. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Accounts Chem. Res. 41, 1653–1661 (2008).

    Article  CAS  Google Scholar 

  9. Li, J.F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    Article  CAS  Google Scholar 

  10. Baumberg, J.J. et al. Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals. Nano Lett. 5, 2262–2267 (2005).

    Article  CAS  Google Scholar 

  11. Cao, Y.W.C., Jin, R.C. & Mirkin, C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002).

    Article  CAS  Google Scholar 

  12. Doering, W.E. & Nie, S.M. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Anal. Chem. 75, 6171–6176 (2003).

    Article  CAS  Google Scholar 

  13. Chen, Z. et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat. Biotechnol. 26, 1285–1292 (2008).

    Article  CAS  Google Scholar 

  14. Jain, P.K., Huang, X.H., El-Sayed, I.H. & El-Sayed, M. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts Chem. Res. 41, 1578–1586 (2008).

    Article  CAS  Google Scholar 

  15. Jackson, J.B. & Halas, N.J. Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc. Natl. Acad. Sci. USA 101, 17930–17935 (2004).

    Article  CAS  Google Scholar 

  16. Graham, D., Thompson, D.G., Smith, W.E. & Faulds, K. Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat. Nanotechnol. 3, 548–551 (2008).

    Article  CAS  Google Scholar 

  17. Qian, X.M. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008).

    Article  CAS  Google Scholar 

  18. Anker, J.N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008).

    Article  CAS  Google Scholar 

  19. Qin, L.D. et al. Designing, fabricating, and imaging Raman hot spots. Proc. Natl. Acad. Sci. USA 103, 13300–13303 (2006).

    Article  CAS  Google Scholar 

  20. Nie, S.M. & Zare, R.N. Optical detection of single molecules. Annu. Rev. Biophys. Biomolec. Struct. 26, 567–596 (1997).

    Article  CAS  Google Scholar 

  21. Park, S., Yang, P.X., Corredor, P. & Weaver, M.J. Transition metal-coated nanoparticle films: vibrational characterization with surface-enhanced Raman scattering. J. Am. Chem. Soc. 124, 2428–2429 (2002).

    Article  CAS  Google Scholar 

  22. Tian, Z.Q., Ren, B., Li, J.F. & Yang, Z.L. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem. Commun. 14, 3514–3534 (2007).

    Article  Google Scholar 

  23. Wu, D.Y., Li, J.F., Ren, B. & Tian, Z.Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 37, 1025–1041 (2008).

    Article  CAS  Google Scholar 

  24. Pettinger, B., Ren, B., Picardi, G., Schuster, R. & Ertl, G. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys. Rev. Lett. 92, 09601 (2004).

    Article  Google Scholar 

  25. Ren, B., Picardi, G., Pettinger, B., Schuster, R. & Ertl, G. Tip-enhanced Raman spectroscopy of benzenethiol adsorbed on Au and Pt single-crystal surfaces. Angew. Chem. In. Ed. 44, 139–142 (2005).

    Article  CAS  Google Scholar 

  26. Stockle, R.M., Suh, Y.D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).

    Article  CAS  Google Scholar 

  27. Anema, J.R., Li, J.F., Yang, Z.L., Ren, B. & Tian, Z.Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy: expanding the versatility of surface-enhanced Raman scattering. Annu. Rev. Anal. Chem. 4, 129–150 (2011).

    Article  CAS  Google Scholar 

  28. Liu, B., Blaszczyk, A., Mayor, M. & Wandlowski, T. Redox-switching in a viologen-type adlayer: An electrochemical shell-isolated nanoparticle enhanced Raman spectroscopy study on Au(111)-(1 x 1) single crystal electrodes. ACS Nano 5, 5662–5672 (2011).

    Article  CAS  Google Scholar 

  29. Honesty, N.R. & Gewirth, A.A. Shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) investigation of benzotriazole film formation on Cu(100), Cu(111), and Cu(poly). J. Raman Spectrosc. 43, 46–50 (2012).

    Article  CAS  Google Scholar 

  30. Li, J.F. et al. Extraordinary enhancement of Raman scattering from pyridine on single crystal Au and Pt electrodes by shell-isolated Au nanoparticles. J. Am. Chem. Soc. 133, 15922–15925 (2011).

    Article  CAS  Google Scholar 

  31. Li, J.F. et al. Core-shell nanoparticle based SERS from hydrogen adsorbed on a rhodium(111) electrode. Chem. Commun. 47, 2023–2025 (2011).

    Article  CAS  Google Scholar 

  32. Huang, Y.F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy of pyridine on smooth silver electrodes. Electrochim. Acta 56, 10652–10657 (2011).

    Article  CAS  Google Scholar 

  33. Butcher, D.P., Boulos, S.P., Murphy, C.J., Ambrosio, R.C. & Gewirth, A.A. Face-dependent shell-isolated nanoparticle enhanced Raman spectroscopy of 2,2'-bipyridine on Au(100) and Au(111). J. Phys. Chem. C 116, 5128–5140 (2012).

    Article  CAS  Google Scholar 

  34. Graham, D. The next generation of advanced spectroscopy: surface enhanced Raman scattering from metal nanoparticles. Angew. Chem. In. Ed. 49, 9325–9327 (2010).

    Article  CAS  Google Scholar 

  35. Guerrero, A.R. & Aroca, R.F. Surface-enhanced fluorescence with shell-isolated nanoparticles (SHINEF). Angew. Chem. In. Ed. 50, 665–668 (2011).

    Article  CAS  Google Scholar 

  36. Tian, X.D. et al. SHINERS and plasmonic properties of Au core SiO2 shell nanoparticles with optimal core size and shell thickness. Submitted to. J. Raman Spectrosc. (2012).

  37. Li, S.B. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) based on gold-core silica-shell nanorods. Z. Phys. Chem. 225, 775–784 (2011).

    Article  CAS  Google Scholar 

  38. Perez-Juste, J., Correa-Duarte, M.A. & Liz-Marzan, L.M. Silica gels with tailored, gold nanorod-driven optical functionalities. Appl. Surf. Sci. 226, 137–143 (2004).

    Article  CAS  Google Scholar 

  39. Sendroiu, I.E., Warner, M.E. & Corn, R.M. Fabrication of silica-coated gold nanorods functionalized with DNA for enhanced surface plasmon resonance imaging biosensing applications. Langmuir 25, 11282–11284 (2009).

    Article  CAS  Google Scholar 

  40. Zhang, X.Y., Zhao, J., Whitney, A.V., Elam, J.W. & Van Duyne, R.P. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J. Am. Chem. Soc. 128, 10304–10309 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N.F. Zheng for thoughtful discussions. This work was supported by the Ministry of Science and Technology (MOST) of China (2011YQ030124, 2010IM040100 and 2009CB930703), and by the National Natural Science Foundation of China (NSFC) (21033007, 21021002 and 20825313).

Author information

Authors and Affiliations

Authors

Contributions

Z.Q.T., Z.L.W., J.F.L. and B.R. conceived and designed the experiments, analyzed the results and participated in writing the manuscript. J.F.L., X.D.T., S.B.L., J.R.A., Y.D., Y.F.W., Q.Z.C. and Y.M.Z. performed the experiments and analyzed the results. Z.L.Y. contributed the theoretical calculations.

Corresponding authors

Correspondence to Zhong Lin Wang or Zhong Qun Tian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Detection of hydrogen adsorption on Pt single-crystal surface. SHINERS spectra of hydrogen adsorbed on Pt(111) at -1.2 V (a), at -1.6 V (b), at -1.9 V (c), without Au@SiO2 NPs at -1.9 V (d), and with the thicker-shell NPs at -1.9 V (e). (PDF 216 kb)

Supplementary Figure 2

Detection of hydrogen adsorption on Si single-crystal surface. SHINERS spectra obtained from Si(111) treated with (a) sulphuric acid, (b) a 30% HF solution, and (c) an oxygen plasma. (PDF 214 kb)

Supplementary Figure 3

Comparison of the adsorption of SCN on Au single-crystal surface with different facets. SHINERS spectra of SCN adsorbed on Au(100) (red curves) and Au(111) (black curves) at 0.0 V. (PDF 211 kb)

Supplementary Figure 4

SERS or SHINERS spectra of PATP molecules in different sandwich configurations. (a) Au/PATP/Au NPs, (b) ZnO nanorods/PATP/Au NPs, (c) Au/PATP/Au@SiO2 NPs, and (d) ZnO nanorods/PATP/Au@SiO2 NPs. (PDF 224 kb)

Supplementary Figure 5

SERS or SHINERS study of CO adsorbed on Pt single-crystal surface. The SERS spectrum of CO on Pt(111) at 0.0 V using bare Au NPs (top), and the SHINERS spectrum of CO on Pt(111) at 0.0 V using Au@SiO2 NPs (bottom). (PDF 212 kb)

Supplementary Figure 6

In-situ probing biology structures by SHINERS. (a, b, c) SHINERS spectra obtained from different locations on a sample consisting of yeast cells incubated with Au@SiO2 NPs on a quartz slide. (d) The spectrum of Au@SiO2 NPs, but without yeast cells, on a quartz slide. (e) An ordinary Raman spectrum of yeast cells on a quartz slide. The peaks marked with red asterisks are related to mannoproteins. (PDF 225 kb)

Supplementary Figure 7

In situ detection of a pesticide residue on an orange skin. The Raman signals were collected using a Raman microscope (A) and a portable Raman spectrometer (B). The spectra shown were obtained from a clean orange skin (a), an orange skin contaminated with parathion (b), and an orange skin contaminated with parathion and then modified by addition of Au@SiO2 NPs (c). The Raman spectrum of solid parathion is provided for comparison (d). (PDF 225 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Tian, X., Li, S. et al. Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat Protoc 8, 52–65 (2013). https://doi.org/10.1038/nprot.2012.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.141

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing