Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Site-directed spin-labeling of nucleotides and the use of in-cell EPR to determine long-range distances in a biologically relevant environment

Abstract

Double electron-electron resonance (DEER) is an electron paramagnetic resonance (EPR) technique used to determine distance distributions in the nanometer range between spin labels by measuring their dipole-dipole interactions. Here we describe how in-cell DEER can be applied to spin-labeled DNA sequences to unravel their conformations in living cells by long-range distance measurements in cellula. As EPR detects unpaired electron spins only, diamagnetic molecules provide no background and do not reduce detection sensitivity of the specific signal. Compared with in-cell NMR spectroscopy, low concentrations of spin-labeled molecules can be used owing to the higher sensitivity of EPR per spin. This protocol describes the synthesis of the spin labels, their introduction in DNA strands, the injection of labeled DNA solutions in cells and the performance of in-cell EPR measurements. Completion of the entire protocol takes 20 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of TPA-labeled 5′-DMT-protected 2′-deoxyuridine phosphoramidite (10).
Figure 2
Figure 3: DEER experiment.
Figure 4: Schematic representation of data analysis.
Figure 5: CW-EPR spectrum of TPA-labeled phosphoramidite.
Figure 6: HPLC purification of spin-labeled oligonucleotides.
Figure 7: Optical images of stage VI X. laevis oocytes.

Similar content being viewed by others

References

  1. Pannier, M., Veit, S., Godt, A., Jeschke, G. & Spiess, H.W. Dead-time free measurement of dipole-dipole interactions between electron spins. J. Magn. Reson. 142, 331–340 (2000).

    Article  CAS  Google Scholar 

  2. Schiemann, O. et al. Spin labeling of oligonucleotides with the nitroxide TPA and use of PELDOR, a pulse EPR method, to measure intramolecular distances. Nat. Protoc. 2, 904–923 (2007).

    Article  CAS  Google Scholar 

  3. Banham, J.E. et al. Distance measurements in the borderline region of applicability of cw EPR and DEER: a model study on a homologous series of spin-labelled peptides. J. Magn. Reson. 191, 202–218 (2007).

    Article  Google Scholar 

  4. Pielak, G.J. & Tian, F. Membrane proteins, magic-angle spinning, and in-cell NMR. Proc. Natl Acad. Sci. USA 109, 4715–4716 (2012).

    Article  CAS  Google Scholar 

  5. Serber, Z. et al. Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy. Nat. Protoc. 1, 2701–2709 (2006).

    Article  CAS  Google Scholar 

  6. Igarashi, R. et al. Distance determination in proteins inside Xenopus laevis oocytes by double electron-electron resonance experiments. J. Am. Chem. Soc. 132, 8228–8229 (2010).

    Article  CAS  Google Scholar 

  7. Azarkh, M. et al. Long-range distance determination in a DNA model system inside Xenopus laevis oocytes by in-cell spin-label EPR. ChemBioChem 12, 1992–1995 (2011).

    Article  CAS  Google Scholar 

  8. Krstic, I. et al. Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angew. Chem. Int. Ed. 50, 5070–5074 (2011).

    Article  CAS  Google Scholar 

  9. Singh, V., Azarkh, M., Exner, T.E., Hartig, J.S. & Drescher, M. Human telomeric quadruplex conformations studied by pulsed EPR. Angew. Chem. Int. Ed. 48, 9728–9730 (2009).

    Article  CAS  Google Scholar 

  10. Hänsel, R. et al. The parallel G-quadruplex structure of vertebrate telomeric repeat sequences is not the preferred folding topology under physiological conditions. Nucleic Acids Res. 39, 5768–5775 (2011).

    Article  Google Scholar 

  11. Hänsel, R. et al. Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy. J. Am. Chem. Soc. 131, 15761–15768 (2009).

    Article  Google Scholar 

  12. Azarkh, M. et al. Intracellular conformations of human telomeric quadruplexes studied by EPR. ChemPhysChem 13, 1444–1447 (2012).

    Article  CAS  Google Scholar 

  13. Singh, V., Azarkh, M., Drescher, M. & Hartig, J.S. Conformations of individual quadruplex units studied in the context of extended human telomeric DNA. Chem. Commun. 48, 8258–8260 (2012).

    Article  CAS  Google Scholar 

  14. Edwards, T.E. & Sigurdsson, S.Th. Site-specific incorporation of nitroxide spin-labels into 2′-positions of nucleic acids. Nat. Protoc. 2, 1954–1962 (2007).

    Article  CAS  Google Scholar 

  15. Qin, P.Z. et al. Measuring nanometer distances in nucleic acids using a sequence-independent nitroxide probe. Nat. Protoc. 2, 2354–2365 (2007).

    Article  CAS  Google Scholar 

  16. Ward, R., Keeble, D.J., El-Mkami, H. & Norman, D.G. Distance determination in heterogeneous DNA model systems by pulsed EPR. ChemBioChem 8, 1957–1964 (2007).

    Article  CAS  Google Scholar 

  17. Schiemann, O., Cekan, P., Margraf, D., Prisner, T.F. & Sigurdsson, S.Th. Relative orientation of rigid nitroxides of PELDOR: beyond distance measurements in nucleic acids. Angew. Chem. Int. Ed. 48, 3292–3295 (2009).

    Article  CAS  Google Scholar 

  18. Marko, A. et al. Conformational flexibility of DNA. J. Am. Chem. Soc. 133, 13375–13379 (2011).

    Article  CAS  Google Scholar 

  19. Sicoli, G. et al. Double electron-electron resonance (DEER): a convenient method to probe DNA conformational changes. Angew. Chem. Int. Ed. 47, 735–737 (2008).

    Article  CAS  Google Scholar 

  20. Sicoli, G. et al. Lesion-induced DNA weak structural changes detected by pulsed EPR spectroscopy combined with site-directed spin labeling. Nucleic Acids Res. 37, 3165–3176 (2009).

    Article  CAS  Google Scholar 

  21. Kim, N.K., Bowman, M.K. & DeRose, V.J. Precise mapping of RNA tertiary structure via nanometer distance measurements with double electron-electron resonance spectroscopy. J. Am. Chem. Soc. 132, 8882–8884 (2010).

    Article  CAS  Google Scholar 

  22. Wunnicke, D. et al. Ligand-induced conformational capture of a synthetic tetracycline riboswitch revealed by pulse EPR. RNA 17, 182–188 (2011).

    Article  CAS  Google Scholar 

  23. Reginsson, G.W. & Schiemann, O. Pulsed electron-electron double resonance: beyond nanometer distance measurements on biomacromolecules. Biochem. J. 434, 353–363 (2011).

    Article  CAS  Google Scholar 

  24. Azarkh, M., Okle, O., Eyring, P., Dietrich, D.R. & Drescher, M. Evaluation of spin labels for in-cell EPR by analysis of nitroxide reduction in cell extract of Xenopus laevis oocytes. J. Magn. Reson. 212, 450–454 (2011).

    Article  CAS  Google Scholar 

  25. Cekan, P., Smith, A.L., Barhate, N., Robinson, B.H. & Sigurdsson, S.T. Rigid spin-labeled nucleoside C: a nonperturbing EPR probe of nucleic acid conformation. Nucleic Acids Res. 36, 5946–5954 (2008).

    Article  CAS  Google Scholar 

  26. Barhate, N., Cekan, P., Massey, A.P. & Sigurdsson, S.T. A nucleoside that contains a rigid nitroxide spin label: a fluorophore in disguise. Angew. Chem. Int. Ed. 46, 2655–2658 (2007).

    Article  CAS  Google Scholar 

  27. Hustedt, E.J., Kirchner, J.J., Spaltenstein, A., Hopkins, P.B. & Robinson, B.H. Monitoring DNA dynamics using spin-labels with different independent mobilities. Biochemistry 34, 4369–4375 (1995).

    Article  CAS  Google Scholar 

  28. Shiokawa, K., Tashiro, K., Yamana, K. & Sameshima, M. Electron-microscopic studies of giant nucleus-like structure formed by lambda DNA introduced into the cytoplasm of Xenopus laevis fertilized-eggs and embryos. Cell. Differ. 20, 253–261 (1987).

    Article  CAS  Google Scholar 

  29. Forbes, D.J., Kirschner, M.W. & Newport, J.W. Spontaneous formation of nucleus-like structures around bacteriophage DNA microinjected into Xenopus eggs. Cell 34, 13–23 (1983).

    Article  CAS  Google Scholar 

  30. Schnizler, K., Kuster, M., Methfessel, C. & Fejtl, M. The Roboocyte: automated cDNA/mRNA injection and subsequent TEVC recording on Xenopus oocytes in 96-well microtiter plates. Receptors Channels 9, 41–48 (2003).

    Article  CAS  Google Scholar 

  31. Jeschke, G. DeerAnalysis2011 user manual (2011) http://www.epr.ethz.ch/software/DeerAnalysis2011_manual.pdf.

  32. Chiang, Y.M., Borbat, P.P. & Freed, J.H. The determination of pair distance distributions by pulsed ESR using Tikhonov regularization. J. Magn. Reson. 172, 279–295 (2005).

    Article  CAS  Google Scholar 

  33. Jeschke, G. et al. DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data. Appl. Magn. Reson. 30, 473–498 (2006).

    Article  CAS  Google Scholar 

  34. Jeschke, G. & Polyhach, Y. Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. Phys. Chem. Chem. Phys. 9, 1895–1910 (2007).

    Article  CAS  Google Scholar 

  35. Dumont, J.N. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J. Morphol. 136, 153–179 (1972).

    Article  CAS  Google Scholar 

  36. Jeschke, G., Pannier, M. & Spiess, H.W. Distance measurements in biological systems by EPR. in Distance Measurements in Biological Systems by EPR, Vol. 19 (eds. Berliner, L.J., Eaton, G.R. & Eaton, S.S.) 493–511 (Kluwer Academic/Plenum Publishers, 2000).

  37. Spaltenstein, A., Robinson, B.H. & Hopkins, P.B. Sequence-dependent and structure-dependent DNA-base dynamics – Synthesis. Structure, and dynamics of site and sequence specifically spin-labeled DNA. Biochemistry 28, 9484–9495 (1989).

    Article  CAS  Google Scholar 

  38. Stork, S.W. & Makinen, M.W. Facile synthesis of 3-formyl-2,2,5,5-tetramethyl-1-oxopyrroline. Synthesis 1999, 1309–1312 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Spitzbarth and M. Wassmer for preparing figures. Research in M.D.'s laboratory is supported by the Deutsche Forschungsgemeinschaft, the Ministry of Science, Research and the Arts of Baden-Württemberg and the German Excellence Initiative.

Author information

Authors and Affiliations

Authors

Contributions

M.A., J.S.H. and M.D. conceived the experimental strategy. J.S.H., D.R.D. and M.D. supervised the project. V.S. synthesized the labeled DNA sequences, O.O. performed the microinjection and M.A. conducted the EPR experiments and data analysis. All authors contributed to the discussion and writing of the manuscript.

Corresponding author

Correspondence to Malte Drescher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azarkh, M., Singh, V., Okle, O. et al. Site-directed spin-labeling of nucleotides and the use of in-cell EPR to determine long-range distances in a biologically relevant environment. Nat Protoc 8, 131–147 (2013). https://doi.org/10.1038/nprot.2012.136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.136

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing