Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Measurement of the nucleation of atmospheric aerosol particles

Abstract

The formation of new atmospheric aerosol particles and their subsequent growth have been observed frequently at various locations all over the world. The atmospheric nucleation rate (or formation rate) and growth rate (GR) are key parameters to characterize the phenomenon. Recent progress in measurement techniques enables us to measure atmospheric nucleation at the size (mobility diameter) of 1.5 (±0.4) nm. The detection limit has decreased from 3 to 1 nm within the past 10 years. In this protocol, we describe the procedures for identifying new-particle-formation (NPF) events, and for determining the nucleation, formation and growth rates during such events under atmospheric conditions. We describe the present instrumentation, best practices and other tools used to investigate atmospheric nucleation and NPF at a certain mobility diameter (1.5, 2.0 or 3.0 nm). The key instruments comprise devices capable of measuring the number concentration of the formed nanoparticles and their size, such as a suite of modern condensation particle counters (CPCs) and air ion spectrometers, and devices for characterizing the pre-existing particle number concentration distribution, such as a differential mobility particle sizer (DMPS). We also discuss the reliability of the methods used and requirements for proper measurements and data analysis. The time scale for realizing this procedure is 1 year.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The size ranges of different measurement techniques, organized by the development time of the instrument.
Figure 2
Figure 3: The twin-DMPS system in Hyytiälä.
Figure 4
Figure 5
Figure 6: New particle formation event observed in Hyytiälä on 26 March 2011.
Figure 7: Growth rate determination by the maximum-concentration method.
Figure 8: Particle growth rate determined by the mode-fitting method.
Figure 9
Figure 10: NPF event on 28 April 2011 in Hyytiälä.
Figure 11: Smoothed aerosol size distribution for 15–16 April 2004.
Figure 12: Regions of interest (ROIs) for the regional NPF detection.
Figure 13: Automatically detected regional NPF events.

Similar content being viewed by others

References

  1. McMurry, P.H. & Friedlander, S.K. New particle formation in the presence of aerosol. Atmos. Environ. 13, 1635–1651 (1979).

    CAS  Google Scholar 

  2. Kulmala, M. et al. Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci. 35, 143–176 (2004).

    CAS  Google Scholar 

  3. Kulmala, M. & Kerminen, V.-M. On the formation and growth of atmospheric nanoparticles. Atmos. Res. 90, 132–150 (2008).

    CAS  Google Scholar 

  4. Weber, R.J., McMurry, P.H., Eisele, F.L. & Tanner, J. Measurement of expected nucleation precursor species and 3–500 nm diameter particles at Mauna Loa observatory, Hawaii. J. Atmos. Sci. 52, 2242–2257 (1995).

    Google Scholar 

  5. Weber, R.J. et al. Measured atmospheric new particle formation rates: implications for nucleation mechanisms. Chem. Eng. Commun. 151, 53–64 (1996).

    CAS  Google Scholar 

  6. Mäkelä, J.M. et al. Observations of ultrafine aerosol particle formation and growth in boreal forest. Geophys. Res. Lett. 24, 1219–1222 (1997).

    Google Scholar 

  7. Dal Maso, M. et al. Aerosol size distribution measurements at four Nordic field stations: identification, analysis and trajectory analysis of new particle formation bursts. Tellus B. 59, 350–361 (2007).

    Google Scholar 

  8. Hussein, T. et al. Time span and spatial scale of regional new particle formation events over Finland and Southern Sweden. Atmos. Chem. Phys. 9, 4699–4716 (2009).

    CAS  Google Scholar 

  9. O'Dowd, C.D. et al. A dedicated study of New Particle Formation and Fate in the Coastal Environment (PARFORCE): overview of objectives and achievements. J. Geophys. Res. 107, 8108 (2002).

    Google Scholar 

  10. Wen, J., Zhao, Y. & Wexler, A.S. Marine particle nucleation: observation at Bodega Bay, California. J. Geophys. Res. 111, D08207 (2006).

    Google Scholar 

  11. Spracklen, D.V. et al. The contribution of boundary layer nucleation events to total particle number concentrations on regional and global scales. Atmos. Chem. Phys. 6, 5631–5648 (2006).

    CAS  Google Scholar 

  12. Yu, F. et al. Spatial distributions of particle number concentrations in the global troposphere: simulations, observations and implications for nucleation mechanisms. J. Geophys. Res. 115, D17205 (2010).

    Google Scholar 

  13. Merikanto, J., Spracklen, D.V., Mann, G.W., Pickering, S.J. & Carslaw, K.S. Impact of nucleation on global CCN. Atmos. Chem. Phys. 9, 8601–8616 (2009).

    CAS  Google Scholar 

  14. Kazil, J. et al. Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys. 10, 10733–10752 (2010).

    CAS  Google Scholar 

  15. Makkonen, R. et al. Air pollution control and decreasing new particle formation lead to strong climate warming. Atmos. Chem. Phys. 12, 1515–1524 (2012).

    CAS  Google Scholar 

  16. Kulmala, M. et al. Towards direct measurement of atmospheric nucleation. Science 318, 89–92 (2007).

    PubMed  CAS  Google Scholar 

  17. Jiang, J. et al. First measurements of neutral atmospheric cluster and 1–2 nm particle number size distributions during nucleation events. Aerosol. Sci. Technol. 45, ii–v (2011).

    CAS  Google Scholar 

  18. Vanhanen, J. et al. Particle size magnifier for nano-CN detection. Aerosol. Sci. Technol. 45, 533–542 (2011).

    CAS  Google Scholar 

  19. Kulmala, M. et al. Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. Atmos. Chem. Phys. 10, 1885–1898 (2010).

    CAS  Google Scholar 

  20. Hari, P. & Kulmala, M. Station for Measuring Ecocystem—Atmosphere Relations (SMEAR II). Boreal Environ. Res. 10, 315–322 (2005).

    CAS  Google Scholar 

  21. Sipilä, M. et al. The role of sulfuric acid in atmospheric nucleation. Science 327, 1243–1246 (2010).

    PubMed  Google Scholar 

  22. Kirkby, J. et al. The role of sulfuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476, 429–433 (2011).

    PubMed  CAS  Google Scholar 

  23. Weber, R.J. et al. Measurements of new particle formation and ultrafine particle growth rates at a clean continental site. J. Geophys. Res. 102, 4375–4386 (1997).

    CAS  Google Scholar 

  24. Kulmala, M. et al. On the formation, growth and composition of nucleation mode particles. Tellus B 53, 479–490 (2001).

    Google Scholar 

  25. McMurry, P.H. et al. A criterion for new particle formation in the sulfur-rich Atlanta atmosphere. J. Geophys. Res. 110, D22S02 (2005).

    Google Scholar 

  26. Stolzenburg, M.R. et al. Growth rates of freshly nucleated atmospheric particles in Atlanta. J. Geophys. Res. 110, D22S05 (2005).

    Google Scholar 

  27. Sihto, S.-L. et al. Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms. Atmos. Chem. Phys. 6, 4079–4091 (2006).

    CAS  Google Scholar 

  28. Riipinen, I. et al. Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and Hyytiälä. Atmos. Chem. Phys. 7, 1899–1914 (2007).

    CAS  Google Scholar 

  29. Nieminen, T. et al. Connection of sulphuric acid to nucleation in Boreal forest. Environ. Sci. Technol. 43, 4715–4721 (2009).

    PubMed  CAS  Google Scholar 

  30. Petäjä, T. et al. Sulfuric acid and OH concentrations in a boreal forest site. Atmos. Chem. Phys. 9, 7435–7448 (2009).

    Google Scholar 

  31. Metzger, A. et al. Evidence for the role of organics in aerosol particle formation under atmospheric conditions. Proc. Natl. Acad. Sci. USA 107, 6646–6651 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Paasonen, P. et al. On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation. Atmos. Chem. Phys. 10, 11223–11242 (2010).

    CAS  Google Scholar 

  33. Riipinen, I. et al. Organic condensation: a vital link connecting atmospheric nucleation to aerosol climate forcing. Atmos. Chem. Phys. 11, 3865–3878 (2011).

    CAS  Google Scholar 

  34. Junninen, H. et al. A high-resolution mass spectrometer to measure atmospheric ion composition. Atmos. Meas. Tech. 3, 1039–1053 (2010).

    CAS  Google Scholar 

  35. Ehn, M. et al. Composition and temporal behavior of ambient ions in the boreal forest. Atmos. Chem. Phys. 10, 8513–8530 (2010).

    CAS  Google Scholar 

  36. Zhao, J., Eisele, F.L., Titcombe, M., Kuang, C. & McMurry, P.H. Chemical ionization mass spectrometric measurements of atmospheric neutral clusters using cluster-CIMS. J. Geophys. Res. 115, D08205 (2010).

    Google Scholar 

  37. Jokinen, T. et al. Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF. Atmos. Chem. Phys. 12, 4117–4125 (2011).

    Google Scholar 

  38. Hinds, W.C. Aerosol Technology (John Wiley & Sons, 1999).

  39. Seinfeld, J.H. & Pandis, S.N. Atmospheric Chemistry and Physics—From Air Pollution to Climate Change (Wiley-Interscience, 2006).

  40. Tammet, H. Size and mobility of nanometer particles, clusters and ions. J. Aerosol Sci. 26, 459–475 (1995).

    CAS  Google Scholar 

  41. Ku, B.K. & de la Mora, J.F. Relation between electrical mobility, mass, and size for nanodrops 1–6.5 nm in diameter in air. Aerosol Sci. Technol. 43, 241–249 (2009).

    CAS  Google Scholar 

  42. Ehn, M. et al. Comparing mobility and mass measurements of atmospheric small ions. Aerosol Sci. Technol. 45, 522–532 (2011).

    CAS  Google Scholar 

  43. Stolzenburg, M. & McMurry, P. An ultrafine aerosol condensation nucleus counter. Aerosol Sci. Technol. 14, 48–65 (1991).

    CAS  Google Scholar 

  44. McMurry, P.H. The history of CPCs. Aerosol Sci. Technol. 33, 297–322 (2000).

    CAS  Google Scholar 

  45. Kulmala, M., Lehtinen, K.E.J., Laakso, L., Mordas, G. & Hämeri, K. On the existence of neutral atmospheric clusters. Boreal Environ. Res. 10, 79–87 (2005a).

    CAS  Google Scholar 

  46. Iida, K., Stolzenburg, M.R. & McMurry, P.H. Effect of working fluid on sub-2 nm particle detection with a laminar flow ultrafine condensation particle counter. Aerosol Sci. Technol. 43, 81–96 (2009).

    CAS  Google Scholar 

  47. Jiang, J., Chen, M., Kuang, C., Attoui, M. & McMurry, P.H. Electrical mobility spectrometer using diethylene glycol condensation particle counter for measurement of aerosol size distributions down to 1 nm. Aerosol Sci. Technol. 45, 510–521 (2011).

    CAS  Google Scholar 

  48. Hoppel, W.A. Determination of the aerosol size distribution from the mobility distribution of the charged fraction of aerosols. J. Aerosol Sci. 9, 41–54 (1978).

    Google Scholar 

  49. Stolzenburg, M.R. An Ultrafine Aerosol Size distribution system, Ph.D. thesis, University of Minnesota, Minneapolis, Minnesota, USA (1988).

  50. Aalto, P.P. et al. Physical characterization of aerosol particles during nucleation events. Tellus B 53, 344–358 (2001).

    Google Scholar 

  51. Wiedensohler, A. et al. Particle mobility size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos. Meas. Tech. 3, 5521–5587 (2010).

    Google Scholar 

  52. Wang, S.C. & Flagan, R.C. Scanning electrical mobility spectrometer. Aerosol Sci. Technol. 13, 230–240 (1990).

    CAS  Google Scholar 

  53. Kulmala, M. et al. The Condensation Particle Counter Battery (CPCB): a new tool to investigate the activation properties of nanoparticles. J. Aerosol Sci. 38, 289–304 (2007).

    CAS  Google Scholar 

  54. Riipinen, I. et al. Applying the Condensation Particle Counter Battery (CPCB) to study the water-affinity of freshly-formed 2–9 nm particles in boreal forest. Atmos. Chem. Phys. 9, 3317–3330 (2009).

    CAS  Google Scholar 

  55. Manninen, H.E. et al. Long-term field measurements of charged and neutral clusters using Neutral cluster and Air Ion Spectrometer (NAIS). Boreal Environ. Res. 14, 591–605 (2009).

    CAS  Google Scholar 

  56. Saros, M., Weber, R.J., Marti, J. & McMurry, P.H. Ultra fine aerosol measurement using a condensation nucleus counter with pulse height analysis. Aerosol Sci. Technol. 25, 200–213 (1996).

    CAS  Google Scholar 

  57. Dick, W.D., McMurry, P.H., Weber, R.J. & Quant, R. White-light detection for nanoparticle sizing with the TSI ultrafine condensation particle counter. J. Nanoparticle Res. 2, 85–90 (2000).

    Google Scholar 

  58. O'Dowd, C.D., Aalto, P., Hämeri, K., Kulmala, M. & Hoffmann, T. Aerosol formation: atmospheric particles from organic vapours. Nature 416, 497–498 (2002).

    PubMed  CAS  Google Scholar 

  59. Sipilä, M. et al. Applicability of condensation particle counters to measure atmospheric clusters. Atmos. Chem. Phys. 8, 4049–4060 (2008).

    Google Scholar 

  60. Sipilä, M. et al. Laboratory verification of PHCPC's ability to monitor atmospheric sub-3 nm clusters. Aerosol Sci. Technol. 43, 126–135 (2009).

    Google Scholar 

  61. Mirme, A. et al. A wide-range multi-channel air ion spectrometer. Boreal Environ. Res. 12, 247–264 (2007).

    CAS  Google Scholar 

  62. Manninen, H.E. et al. EUCAARI ion spectrometer measurements at 12 European sites—analysis of new particle formation events. Atmos. Chem. Phys. 10, 7907–7927 (2010).

    CAS  Google Scholar 

  63. Tammet, H. Continuous scanning of the mobility and size distribution of charged clusters and nanometer particles in atmospheric air and the Balanced Scanning Mobility Analyzer BSMA. Atmos. Res. 82, 523–535 (2006).

    CAS  Google Scholar 

  64. Tammet, H. Symmetric inclined grid mobility analyzer for the measurement of charged clusters and fine nanoparticles in atmospheric air. Aerosol Sci. Technol. 45, 468–479 (2011).

    CAS  Google Scholar 

  65. Flagan, R.C. History of electrical aerosol measurements. Aerosol Sci. Technol. 28, 301–380 (1998).

    CAS  Google Scholar 

  66. Eisele, F.L. et al. Negative atmospheric ions and their potential role in ion-induced nucleation. J. Geophys. Res. 111, D04305 (2006).

    Google Scholar 

  67. Iida, K. et al. Contribution of ion-induced nucleation to new particle formation: methodology and its application to atmospheric observations in Boulder, Colorado. J. Geophys. Res. 111, D23201 (2006).

    Google Scholar 

  68. Laakso, L. et al. Detecting charging state of ultra-fine particles: instrumental development and ambient measurements. Atmos. Chem. Phys. 7, 1333–1345 (2007).

    CAS  Google Scholar 

  69. Gagne, S., Laakso, L., Petäjä, T., Kerminen, V.-M. & Kulmala, M. Analysis of one year of Ion-DMPS data from the SMEAR II station, Finland. Tellus B 60, 318–329 (2008).

    Google Scholar 

  70. Hirsikko, A. et al. Atmospheric ions and nucleation: a review of observations. Atmos. Chem. Phys. 11, 767–798 (2011).

    CAS  Google Scholar 

  71. Dal Maso, M. et al. Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland. Boreal Env. Res. 10, 323–336 (2005).

    Google Scholar 

  72. Hirsikko, A. et al. Identification and classification of the formation of intermediate ions measured in boreal forest. Atmos. Chem. Phys. 7, 201–210 (2007).

    CAS  Google Scholar 

  73. DalMaso, M. et al. Condensation and coagulation sinks and formation of nucleation mode particles in coastal and boreal forest boundary layers. J. Geophys. Res. 107, 8097 (2002).

    Google Scholar 

  74. Iida, K., Stolzenburg, M.R., McMurry, P.H. & Smith, J.N. Estimating nanoparticle growth rates from size-dependent charged fractions: analysis of new particle formation events in Mexico City. J. Geophys. Res. 113, D05207 (2008).

    Google Scholar 

  75. Nieminen, T., Lehtinen, K.E.J. & Kulmala, M. Sub-10 nm particle growth by vapor condensation: effects of vapour molecule size and particle thermal speed. Atmos. Chem. Phys. 10, 9773–9779 (2010).

    CAS  Google Scholar 

  76. Leppä, J., Anttila, T., Kerminen, V.-M., Kulmala, M. & Lehtinen, K.E.J. Atmospheric new particle formation: real and apparent growth of neutral and charged particles. Atmos. Chem. Phys. 11, 4939–4955 (2011).

    Google Scholar 

  77. Yli-Juuti, T. et al. Nucleation mode growth rates in Hyytiälä during 2003–2009: variation with particle size, season, data analysis method and ambient conditions. Atmos. Chem. Phys. 11, 12865–12886 (2011).

    CAS  Google Scholar 

  78. Korhonen, H., Sihto, S.-L., Kerminen, V.M. & Lehtinen, K.E.J. Evaluation of the accuracy of analysis tools for atmospheric new particle formation. Atmos. Chem. Phys. 11, 3051–3066 (2011).

    CAS  Google Scholar 

  79. Kerminen, V.-M., Pirjola, L. & Kulmala, M. How significantly does coagulation scavenging limit atmospheric particle production. J. Geophys. Res. 106, 24119–24125 (2001).

    CAS  Google Scholar 

  80. Kerminen, V.-M. & Kulmala, M. Analytical formulae connecting the 'real' and the 'apparent' nucleation rate and the nuclei number concentration for atmospheric nucleation events. J. Aerosol. Sci. 33, 609–622 (2002).

    CAS  Google Scholar 

  81. Lehtinen, K.E.J., Dal Maso, M., Kulmala, M. & Kerminen, V.-M. Estimating nucleation rates from apparent particle formation rates and vice versa: revised formulation of the Kerminen–Kulmala equation. J. Aerosol. Sci. 38, 988–994 (2007).

    CAS  Google Scholar 

  82. Anttila, T., Kerminen, V.-M. & Lehtinen, K.E.J. Parameterizing the formation rate of new particles: the effect of self-coagulation. J. Aerosol. Sci. 41, 621–632 (2010).

    CAS  Google Scholar 

  83. Vana, M. et al. Characteristic features of air ions at Mace Head on the west coast of Ireland. Atmos. Res. 90, 278–286 (2008).

    CAS  Google Scholar 

  84. Yli-Juuti, T. et al. Characteristics of new particle formation events and cluster ions at K-Pustzta, Hungary. Boreal Environ. Res. 14, 683–698 (2009).

    CAS  Google Scholar 

  85. Schröder, F. & Ström, J. Aircraft measurements of submicrometer aerosol particles (>7 nm) in the midlatitude free troposphere and tropopause region. Atmos. Res. 44, 333–356 (1997).

    Google Scholar 

  86. Brock, C.A. et al. Ultrafine particle size distributions measured in aircraft exhaust plumes. J. Geophys. Res. 105, 26555–26567 (2000).

    CAS  Google Scholar 

  87. Feldpausch, P., Fiebig, M., Fritzsche, L. & Petzold, A. Measurement of ultrafine aerosol size distributions by a combination of diffusion screen separators and condensation particle counters. J. Aerosol. Sci. 37, 577–597 (2006).

    CAS  Google Scholar 

  88. Hermann, M. et al. Submicrometer aerosol particle distributions in the upper troposphere over the mid-latitude North Atlantic: results from the third route of 'CARIBIC'. Tellus B 60, 106–117 (2008).

    Google Scholar 

  89. O'Dowd, C.D. et al. Airborne measurements of nucleation mode particles II: boreal forest nucleation events. Atmos. Chem. Phys. 9, 937–944 (2009).

    CAS  Google Scholar 

  90. Kulmala, M. et al. On the growth of nucleation mode particles: source rates of condensable vapour in polluted and clean environments. Atmos. Chem. Phys. 5, 409–416 (2005).

    CAS  Google Scholar 

  91. Buenrostro Mazon, S. et al. Classifying previously undefined days from eleven years of aerosol-particle-size distribution data from the SMEAR II station, Hyytiälä, Finland. Atmos. Chem. Phys. 9, 667–676 (2009).

    Google Scholar 

  92. Lehtinen, K.E.J. & Kulmala, M. A model for particle formation and growth in the atmosphere with molecular resolution in size. Atmos. Chem. Phys. 3, 251–257 (2002).

    Google Scholar 

  93. Mäkelä, J.M., Koponen, I.K., Aalto, P. & Kulmala, M. One-year data of submicron size modes of tropospheric background aerosol in Southern Finland. J. Aerosol Sci. 31, 595–611 (2000).

    Google Scholar 

  94. Birmili, W., Wiedensohler, A., Heintzenberg, J. & Lehmann, K. Atmospheric particle number size distribution in central Europe: statistical relations to air masses and meteorology. J. Geophys. Res. 106, 32005–32018 (2001).

    Google Scholar 

  95. Hoppel, W.A., Frick, G.M., Fitzgerald, J. & Larson, R.E. Marine boundary-layer measurements of new particle formation and the effects non-precipitating clouds have on aerosol size distribution. J. Geophys. Res. 99, 14443–14459 (1994).

    Google Scholar 

  96. Hussein, T. et al. Evaluation of an automatic algorithm for fitting the particle number distributions. Boreal Environ. Res. 10, 337–355 (2005).

    Google Scholar 

  97. Fuchs, N.A. & Sutugin, A.G. High-dispersed aerosols in topics. in Current Aerosol Research Vol. 2 (eds. Hidy, G.M. & Brock, J.R.) 1–60 (Pergamon, 1971).

  98. Tammet, H. & Kulmala, M. Simulation tool for atmospheric aerosol nucleation bursts. J. Aerosol. Sci. 36, 173–196 (2005).

    CAS  Google Scholar 

  99. Birmili, W. et al. The Hohenpeissenberg aerosol formation experiment (HAFEX): a long-term study including size-resolved aerosol, H2SO4, OH, and monoterpenes measurements. Atmos. Chem. Phys. 3, 361–376 (2003).

    CAS  Google Scholar 

  100. Wu, Z. et al. New particle formation in Beijing, China: statistical analysis of a 1-year dataset. J. Geophys. Res. 112, D09209 (2007).

    Google Scholar 

  101. Asmi, E. et al. Secondary new particle formation in Northern Finland Pallas site between the years 2000 and 2010. Atmos. Chem. Phys. 11, 12959–12972 (2011).

    CAS  Google Scholar 

  102. Kulmala, M. et al. A new feedback mechanism linking forests, aerosols, and climate. Atmos. Chem. Phys. 4, 557–562 (2004).

    CAS  Google Scholar 

  103. Dal Maso, M., Hari, P. & Kulmala, M. Spring recovery of photosynthesis and atmospheric particle formation. Boreal Environ. Res. 14, 711–721 (2009).

    CAS  Google Scholar 

  104. Hamed, A. et al. Nucleation and growth of new particles in Po Valley, Italy. Atmos. Chem. Phys. 7, 355–376 (2007).

    CAS  Google Scholar 

  105. Kerminen, V.-M., Lehtinen, K.E.J., Anttila, T. & Kulmala, M. Dynamics of atmospheric nucleation mode particles: a timescale analysis. Tellus B 56, 135–146 (2004).

    Google Scholar 

  106. Pierce, J.R. & Adams, P.J. Efficiency of cloud condensation nuclei formation from ultrafine particles. Atmos. Chem. Phys. 7, 1367–1379 (2007).

    CAS  Google Scholar 

  107. Lehtinen, K.E.J., Rannik, Ü., Petäjä, T., Kulmala, M. & Hari, P. Nucleation rate and vapor concentration estimations using a least-squares aerosol dynamics method. J. Geophys. Res. 109, D21209 (2004).

    Google Scholar 

  108. Verheggen, B. & Mozurkewich, M. An inverse modeling procedure to determine particle growth and nucleation rates from measured aerosol size distributions. Atmos. Chem. Phys. 6, 2927–2942 (2006).

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from a European Research Council (ERC) Advanced grant (ATM-NUCLE, 227463); an ERC Starting grant (ATMOGAIN); Academy of Finland projects 211483, 211484 and 1118615, 139656, 251427; the Norden Top Level Research Initiative 'Cryosphere-Atmosphere Interactions in a Changing Arctic Climate' (CRAICC); and the European Union (Aerosols, Clouds and Trace gases Research InfraStructure Network (ACTRIS)) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing and planning of the paper. M.K. and V.-M.K. were responsible for the INTRODUCTION. T.P., M.S., H.E.M., K.L., M.K. and P.P.A. were responsible for the section on 'Requirements for measuring nucleation of atmospheric aerosol particles'. With regard to the 'Procedure overview', MATERIALS, and PROCEDURE sections and associated Supplementary Methods, T.N., M.D.M., H.J., P.P., I.R. and A.L. were responsible for the event analysis; T.N., M.D.M., I.R., K.E.J.L. and H.J. were responsible for nanoparticle GRs; V.-M.K., K.E.J.L., T.N., K.L., M.D.M., P.P. and M.K. were responsible for nucleation and formation rates; and M.K., T.P., P.P., V.-M.K., M.S., I.R. and A.L. were responsible for the overall structure of sections. T.P., M.S. and M.K. were responsible for the TROUBLESHOOTING section. T.N., M.K., H.E.M. and K.L. were responsible for the ANTICIPATED RESULTS section.

Corresponding author

Correspondence to Markku Kulmala.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

Measurement methods for atmospheric nanoparticles (PDF 446 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulmala, M., Petäjä, T., Nieminen, T. et al. Measurement of the nucleation of atmospheric aerosol particles. Nat Protoc 7, 1651–1667 (2012). https://doi.org/10.1038/nprot.2012.091

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.091

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing