Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Measuring substrate binding and affinity of purified membrane transport proteins using the scintillation proximity assay


The scintillation proximity assay (SPA) is a rapid radioligand binding assay. Upon binding of radioactively labeled ligands (here L-[3H]arginine or D-[3H]glucose) to acceptor proteins immobilized on fluoromicrospheres (containing the scintillant), a light signal is stimulated and measured. The application of SPA to purified, detergent-solubilized membrane transport proteins allows substrate-binding properties to be assessed (e.g., substrate specificity and affinity), usually within 1 d. Notably, the SPA makes it possible to study specific transporters without interference from other cellular components, such as endogenous transporters. Reconstitution of the target transporter into proteoliposomes is not required. The SPA procedure allows high sample throughput and simple sample handling without the need for washing or separation steps: components are mixed in one well and the signal is measured directly after incubation. Therefore, the SPA is an excellent tool for high-throughput screening experiments, e.g., to search for substrates and inhibitors, and it has also recently become an attractive tool for drug discovery.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of the SPA.
Figure 2: Optimization of the SPA signal illustrated for AdiC using L-[3H]arginine and PVT beads.
Figure 3: SPA signal validation.
Figure 4: Possible applications of the SPA for transporter characterization.


  1. Udenfriend, S., Gerber, L. & Nelson, N. Scintillation proximity assay: a sensitive and continuous isotopic method for monitoring ligand/receptor and antigen/antibody interactions. Anal. Biochem. 161, 494–500 (1987).

    Article  CAS  Google Scholar 

  2. Bosworth, N. & Towers, P. Scintillation proximity assay. Nature 341, 167–168 (1989).

    Article  CAS  Google Scholar 

  3. Udenfriend, S., Gerber, L.D., Brink, L. & Spector, S. Scintillation proximity radioimmunoassay utilizing 125I-labeled ligands. Proc. Natl. Acad. Sci. USA 82, 8672–8676 (1985).

    Article  CAS  Google Scholar 

  4. Nelson, N. A novel method for the detection of receptors and membrane proteins by scintillation proximity radioassay. Anal. Biochem. 165, 287–293 (1987).

    Article  CAS  Google Scholar 

  5. Dallas-Yang, Q., Qureshi, S.A., Xie, D., Zhang, B.B. & Jiang, G. Detection of glucagon-dependent GTPγS binding in high-throughput format. Anal. Biochem. 301, 156–159 (2002).

    Article  CAS  Google Scholar 

  6. Ferrer, M. et al. A fully automated [35S]GTPγS scintillation proximity assay for the high-throughput screening of Gi-linked G protein-coupled receptors. Assay Drug Dev. Technol. 1, 261–273 (2003).

    Article  CAS  Google Scholar 

  7. DeLapp, N.W. et al. Determination of [35S]guanosine-5′-O-(3-thio)triphosphate binding mediated by cholinergic muscarinic receptors in membranes from Chinese hamster ovary cells and rat striatum using an anti-G protein scintillation proximity assay. J. Pharmacol. Exp. Ther. 289, 946–955 (1999).

    PubMed  CAS  Google Scholar 

  8. Cussac, D., Newman-Tancredi, A., Duqueyroix, D., Pasteau, V. & Millan, M.J. Differential activation of Gq/11 and Gi(3) proteins at 5-hydroxytryptamine(2C) receptors revealed by antibody capture assays: influence of receptor reserve and relationship to agonist-directed trafficking. Mol. Pharmacol. 62, 578–589 (2002).

    Article  CAS  Google Scholar 

  9. Newman-Tancredi, A., Cussac, D., Marini, L. & Millan, M.J. Antibody capture assay reveals bell-shaped concentration-response isotherms for h5-HT(1A) receptor-mediated Gα(i3) activation: conformational selection by high-efficacy agonists, and relationship to trafficking of receptor signaling. Mol. Pharmacol. 62, 590–601 (2002).

    Article  CAS  Google Scholar 

  10. Odagaki, Y. & Toyoshima, R. Muscarinic acetylcholine receptor-mediated activation of G(q) in rat brain membranes determined by guanosine-5′-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding using an anti-G protein scintillation proximity assay. J. Neural. Transm. 119, 525–532 (2011).

    Article  CAS  Google Scholar 

  11. DeLapp, N.W. The antibody-capture [(35)S]GTPγS scintillation proximity assay: a powerful emerging technique for analysis of GPCR pharmacology. Trends Pharmacol. Sci. 25, 400–401 (2004).

    Article  CAS  Google Scholar 

  12. Quick, M. & Javitch, J.A. Monitoring the function of membrane transport proteins in detergent-solubilized form. Proc. Natl. Acad. Sci. USA 104, 3603–3608 (2007).

    Article  CAS  Google Scholar 

  13. Urban, F. Jr . et al. The important role of residue F268 in ligand binding by LXRβ. FEBS Lett. 484, 159–163 (2000).

    Article  CAS  Google Scholar 

  14. Jeckelmann, J.-M. et al. Structure and function of the glucose PTS transporter from Escherichia coli. J. Struct. Biol. 176, 395–403 (2011).

    Article  CAS  Google Scholar 

  15. Levin, E.J., Quick, M. & Zhou, M. Crystal structure of a bacterial homologue of the kidney urea transporter. Nature 462, 757–761 (2009).

    Article  CAS  Google Scholar 

  16. Lu, F. et al. Structure and mechanism of the uracil transporter UraA. Nature 472, 243–246 (2011).

    Article  CAS  Google Scholar 

  17. Meury, M. et al. Structure determination of channel and transport proteins by high-resolution microscopy techniques. Biol. Chem. 392, 143–150 (2011).

    Article  CAS  Google Scholar 

  18. Piscitelli, C.L., Krishnamurthy, H. & Gouaux, E. Neurotransmitter/sodium symporter orthologue LeuT has a single high-affinity substrate site. Nature 468, 1129–1132 (2010).

    Article  CAS  Google Scholar 

  19. Piscitelli, C.L. & Gouaux, E. Insights into transport mechanism from LeuT engineered to transport tryptophan. EMBO J. 31, 228–235 (2011).

    Article  CAS  Google Scholar 

  20. Quick, M., Shi, L., Zehnpfennig, B., Weinstein, H. & Javitch, J.A. Experimental conditions can obscure the second high-affinity site in LeuT. Nat. Struct. Mol. Biol. 19, 207–211 (2012).

    Article  CAS  Google Scholar 

  21. Zhou, Z. et al. LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake. Science 317, 1390–1393 (2007).

    Article  CAS  Google Scholar 

  22. Zhou, Z. et al. Antidepressant specificity of serotonin transporter suggested by three LeuT-SSRI structures. Nat. Struct. Mol. Biol. 16, 652–657 (2009).

    Article  CAS  Google Scholar 

  23. Glickman, J.F., Schmid, A. & Ferrand, S. Scintillation proximity assays in high-throughput screening. Assay Drug Dev. Technol. 6, 433–455 (2008).

    Article  CAS  Google Scholar 

  24. Wu, S. & Liu, B. Application of scintillation proximity assay in drug discovery. BioDrugs 19, 383–392 (2005).

    Article  CAS  Google Scholar 

  25. Fang, Y., Kolmakova-Partensky, L. & Miller, C. A bacterial arginine-agmatine exchange transporter involved in extreme acid resistance. J. Biol. Chem. 282, 176–182 (2007).

    Article  CAS  Google Scholar 

  26. Harder, D. & Fotiadis, D. Preparation of detergent-solubilized membranes from Escherichia coli. Protoc. Exchange doi:10.1038/protex.2012.033 (2012).

  27. Harder, D. & Fotiadis, D. Purification of His-tagged proteins from detergent-solubilized membranes. Protoc. Exchange doi:10.1038/protex.2012.034 (2012).

  28. Berry, J. & Price-Jones, M. Measurement of radioligand binding by scintillation proximity assay. Methods Mol. Biol. 306, 121–137 (2005).

    PubMed  CAS  Google Scholar 

  29. Carpenter, J.W. et al. Configuring radioligand receptor binding assays for HTS using scintillation proximity assay technology. Methods Mol. Biol. 190, 31–49 (2002).

    PubMed  CAS  Google Scholar 

  30. Shi, L., Quick, M., Zhao, Y., Weinstein, H. & Javitch, J.A. The mechanism of a neurotransmitter:sodium symporter—inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol. Cell 30, 667–677 (2008).

    Article  CAS  Google Scholar 

  31. Sorg, G., Schubert, H.D., Buttner, F.H. & Heilker, R. Automated high throughput screening for serine kinase inhibitors using a LEADseeker scintillation proximity assay in the 1536-well format. J. Biomol. Screen 7, 11–19 (2002).

    Article  CAS  Google Scholar 

  32. Casagrande, F. et al. Projection structure of a member of the amino acid/polyamine/organocation transporter superfamily. J. Biol. Chem. 283, 33240–33248 (2008).

    Article  CAS  Google Scholar 

  33. Porter, A.C. et al. M1 muscarinic receptor signaling in mouse hippocampus and cortex. Brain Res. 944, 82–89 (2002).

    Article  CAS  Google Scholar 

  34. Seddon, A.M., Curnow, P. & Booth, P.J. Membrane proteins, lipids and detergents: not just a soap opera. Biochim. Biophys. Acta 1666, 105–117 (2004).

    Article  CAS  Google Scholar 

  35. VanAken, T., Foxall-VanAken, S., Castleman, S. & Ferguson-Miller, S. Alkyl glycoside detergents: synthesis and applications to the study of membrane proteins. Methods Enzymol. 125, 27–35 (1986).

    Article  CAS  Google Scholar 

Download references


We are grateful to M. Quick for fruitful discussions, M. Palacin and Z. Ucurum for providing the AdiC constructs, J.-M. Jeckelmann for the IICB clone and J. Gertsch for access to the scintillation counters. This work was supported by the Swiss National Foundation for Scientific Research (grants 31003A_125150 and 31SY30-131038 to D.F.), the European Science Foundation (grant 09-EuroSYNBIO-FP-012 NANOCELL to D.F.), the Novartis Foundation and the National Centre of Competence in Research (NCCR) TransCure.

Author information

Authors and Affiliations



D.H. designed and performed experiments, analyzed data and wrote the manuscript; D.F. designed experiments, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Dimitrios Fotiadis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harder, D., Fotiadis, D. Measuring substrate binding and affinity of purified membrane transport proteins using the scintillation proximity assay. Nat Protoc 7, 1569–1578 (2012).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing